Akute Promyelozyten Leukämie (APL)

Leitlinie

ICD10: C92.4
Empfehlungen der Fachgesellschaft zur Diagnostik und Therapie hämatologischer und onkologischer Erkrankungen
Herausgeber
DGHO Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V.
Alexanderplatz 1
10178 Berlin

Geschäftsführender Vorsitzender: Prof. Dr. med. Michael Hallek
Telefon: +49 (0)30 27 87 60 89 - 0
Telefax: +49 (0)30 27 87 60 89 - 18
info@dgho.de
www.dgho.de

Ansprechpartner
Prof. Dr. med. Bernhard Wörmann
Medizinischer Leiter

Quelle
www.onkopedia.com

Die Empfehlungen der DGHO für die Diagnostik und Therapie hämatologischer und onkologischer Erkrankungen entbinden die verantwortliche Ärztin / den verantwortlichen Arzt nicht davon, notwendige Diagnostik, Indikationen, Kontraindikationen und Dosierungen im Einzelfall zu überprüfen! Die DGHO übernimmt für Empfehlungen keine Gewähr.
Inhaltsverzeichnis

1 Zusammenfassung ... 3

2 Grundlagen ... 3
 2.1 Definition und Basisinformationen 3
 2.2 Epidemiologie .. 4
 2.3 Pathogenese .. 4
 2.4 Risikofaktoren .. 4

3 Vorsorge und Früherkennung .. 4

4 Klinisches Bild ... 4

5 Diagnose .. 5
 5.1 Diagnostik .. 5
 5.1.1 Morphologie/ Zytochemie/ Immuntypisierung 6
 5.1.2 Zytogenetik / Molekularbiologie 6
 5.2 Differenzialdiagnose ... 6
 5.3 Prognostische Faktoren ... 7
 5.3.1 Frühtod .. 7
 5.3.2 Rezidivrisiko .. 7

6 Therapie ... 8
 6.1 Therapiestruktur .. 8
 6.1.1 Erstlinientherapie .. 8
 6.1.1.1 Therapie bei Standardrisiko: ATO plus ATRA 9
 6.1.1.1.1 Induktionstherapie - ATO plus ATRA 9
 6.1.1.1.2 Konsolidierungstherapie - ATO plus ATRA 10
 6.1.1.1.3 Erhaltungstherapie - ATO plus ATRA 10
 6.1.1.2 Therapie bei hohem Risiko: ATRA plus Chemotherapie 10
 6.1.1.2.1 Induktionstherapie - ATRA plus Chemotherapie 10
 6.1.1.2.2 Konsolidierungstherapie - ATRA plus Chemotherapie 10
 6.1.1.2.3 Erhaltungstherapie - ATRA plus Chemotherapie 10
 6.1.2 Rezidivierte oder refraktäre APL 11
 6.2 Therapiemodalitäten .. 12
 6.2.1 Substitutionstherapie zur Stabilisierung bei Blutungsneigung 12
 6.2.2 All-trans-Retinsäure (ATRA) 12
 6.2.3 Arsentrioxid .. 13
 6.2.4 Chemotherapie ... 14
 6.2.5 Molekulares Monitoring ... 14
 6.2.6 Supportive Therapie ... 15
6.2.6.1 Gerinnungsstörungen ... 15
6.2.6.2 Hyperleukozytose, APL-Differenzierungssyndrom 15
6.2.6.3 Infektionen .. 16
 6.3 Besondere Situationen .. 16
 6.3.1 APL mit seltenen Translokationen ... 16
 6.3.2 Ältere Patienten ... 16
 6.3.3 Schwangerschaft .. 16

8 Verlaufskontrolle und Nachsorge .. 17
 8.2 Nachsorge ... 17

9 Literatur .. 17

10 Aktive Studien ... 22

12 Studienergebnisse ... 22

13 Zulassungsstatus .. 22

14 Links ... 22

15 Anschriften der Verfasser ... 22

16 Erklärungen zu möglichen Interessenkonflikten 23
Akute Promyelozyten Leukämie (APL)

ICD10: C92.4
Stand: Januar 2018

Autoren: Eva Lengfelder, Jean-Francois Lambert, David Nachbaur, Dietger Niederwieser, Uwe Platzbecker, Richard F. Schlenk, Bernhard Wörmann

1 Zusammenfassung

2 Grundlagen

2.1 Definition und Basisinformationen

Das klinische Bild der unbehandelten APL ist charakterisiert durch eine rasch zunehmende Blutungsneigung aufgrund oft ausgeprägter plasmatischer Gerinnungsstörungen sowie durch die Folgen der Thrombozytopenie. Das Krankheitsbild der APL ist als hämatologischer Notfall anzusehen, der umgehend einer diagnostischen Abklärung und ohne Verzögerung der Einleitung spezifischer Therapiemaßnahmen bedarf.

Durch die Einführung von All-trans-Retinsäure (ATRA) in die Therapie der APL konnte die Heilungsraten gegenüber alleiniger Chemotherapie verdoppelt werde. Mit der Kombination von ATRA und anthrazyklinhaltiger Chemotherapie werden Remissionsraten von 80 bis 90% und Langzeitüberlebensraten über 75% erreicht [5, 55]. Einen weiteren Fortschritt in der Primärtherapie stellt der Einsatz von Arsentrioxid (ATO) in Kombination mit ATRA dar, wodurch die Rezidivrate weiter reduziert und gleichzeitig die Toxizität der Therapie vermindert werden konnte [40]. Nahezu unverändert besteht ein hohes Risiko in der Frühphase der Erkrankung an Blutungskomplikationen zu versterben [55].
2.2 Epidemiologie

2.3 Pathogenese

Bei über 95% der Patienten mit akuter Promyelozytenleukämie ist genetisch die reziproke chromosomale Translokation t(15;17)(q22;q12) mit Beteiligung des RARA-Gens (Retinoic Acid Receptor-alpha) auf Chromosom 17 und des PML-Gens (Promyelocytic Leukemia Gene) auf Chromosom 15 nachweisbar [25, 26, 51]. Diese Translokation findet auf der Ebene der myeloischen Progenitorzellen statt. Das Fusionsprotein bindet mit höherer Affinität an zelluläre DNA und blockiert dadurch die normale granulozytäre Differenzierung. Bei einem kleinen Prozentsatz von Patienten mit dem zytologischen Bild einer APL finden sich andere Translokationspartner inkl. PZLF-RARA, NPM1-RARA, NUMA1-RARA, FIP1L1 und STAT5b [55]. Die chromosomale Translokation mit Beteiligung von RARA ist eine obligate, aber wahrscheinlich keine ausreichende Bedingung für die maligne Transformation bei der APL. Whole-Genome-sequencing hat weitere, genetische Aberrationen identifiziert, die den Krankheitsverlauf und das Therapiespreechen beeinflussen können. Dazu gehören vor allem FLT3-ITD sowie Mutationen in FLT3, WT1, NRAS und KRA5 [42].

Der Anteil der Therapie-induzierten APL nach Chemotherapie insbesondere nach Topoisomerase-II (Topo-II) Inhibitoren oder alkylierenden Substanzen hat in aktuellen Publikation auf 15–21% zugenommen [10] verglichen mit 8% bei früheren Studien [48]. Aktuelle Arbeiten zeigen Hotspots in den Bruchpunktregionen von PML und RARA als präferentielle Orte des Topo-II-induzierten DNA Schadens [29]

2.4 Risikofaktoren

Die Ursache der APL ist bei den meisten Patienten nicht geklärt, auch nicht die unterschiedlichen regionalen und ethnischen Häufigkeiten. In den letzten Jahren wurden zunehmend thera pieassozierte APL nach Chemotherapie [32], vor allem nach Einsatz von Topoisomerase-II Inhibitoren (z.B. Mitoxantron für MS Therapie) beobachtet [9].

3 Vorsorge und Früherkennung

Wie bei allen akuten Leukämien gibt es auch bei der APL keine wirksamen Maßnahmen zur Vorbeugung und Früherkennung. Oftmals werden jedoch Erstsymptome in Form einer auffälligen Blutungsneigung nicht richtig eingeordnet, wodurch der Zeitpunkt der Diagnosestellung verzögert und das Risiko der Frühmortalität erhöht wird.

4 Klinisches Bild

Bei über der Hälfte der APL Patienten bestehen ausgeprägte Gerinnungsstörungen mit einem hohen Risiko für lebensgefährliche intrazerebrale Blutungen sowie Blutungen in Haut und Schleimhäute, Gastrointestinaltrakt und Lunge. Je nach Ausprägung der Thrombozytopenie wird die Blutungsneigung verstärkt. Wie bei allen anderen Formen von akuter Leukämie können
auch die Symptome der Panzytopenie im Vordergrund stehen. Charakteristisch sind Müdigkeit, Leistungsabfall und Blässe etc. aufgrund der Anämie sowie eine gesteigerte Infektneigung als Folge der Neutropenie. Selten sind thromboembolische Komplikationen, die auch große venöse Gefäße betreffen können.

5 Diagnose

5.1 Diagnostik

Tabelle 1: Diagnostik bei Verdacht auf APL

<table>
<thead>
<tr>
<th>Untersuchung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anamnese und körperliche Untersuchung</td>
<td>insbesondere mit Berücksichtigung von Blutungsneigung, Anämiesymptomen, Infekten</td>
</tr>
<tr>
<td>Blutbild und Differentialblutbild</td>
<td>Zytologie, Zytochemie, Immunphänotypisierung, FISH (t(15;17)) oder Immunfluoreszenz (PML)</td>
</tr>
<tr>
<td>Knochenmarkaspirat</td>
<td>Zytogenetik, konventionell</td>
</tr>
<tr>
<td>Knochenmarkbiopsie</td>
<td>bei Punctio sicca</td>
</tr>
<tr>
<td>Gerinnungsstatus</td>
<td>Quick, PTT, Fibrinogen, D-Dimere</td>
</tr>
</tbody>
</table>

Vor Einleitung der Therapie sind ergänzende Untersuchungen erforderlich, siehe Tabelle 2.

Tabelle 2: Ergänzende Untersuchungen

<table>
<thead>
<tr>
<th>Untersuchung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinzustand</td>
<td>ECOG/WHO Score</td>
</tr>
<tr>
<td>Evaluierung der Komorbiditäten</td>
<td></td>
</tr>
<tr>
<td>Klinische Chemie, Urinanalyse</td>
<td>besondere Beachtung von Elektrolyten vor ATO</td>
</tr>
<tr>
<td>Schwangerschaftstest</td>
<td>falls zutreffend</td>
</tr>
<tr>
<td>Röntgen Thorax</td>
<td></td>
</tr>
<tr>
<td>EKG</td>
<td>wichtig für QTc- (QTcF-) Zeit-Bestimmung *</td>
</tr>
<tr>
<td>Echokardiographie</td>
<td>bei kardialer Vorerkrankung</td>
</tr>
</tbody>
</table>

Legende:
* Es empfiehlt sich die Bestimmung der QTc-Zeit nach der Fridericia-Korrekturmethode: QTcF (QTcF=QT/Kubikwurzel von RR), da die zumeist übliche Bestimmung nach der Bazett-Korrekturmethode QTcB=QT/Quadratwurzel von RR) zu unnötigen Unterbrechungen der ATO-Therapie führen kann [50].
5.1.1 Morphologie/ Zytochemie/ Immuntypisierung

In der Regel ist die charakteristische Morphologie der APL-Blasten diagnostisch wegweisend. Auf der Basis des mikroskopischen Bildes werden zwei Subtypen unterschieden, die wesentlich häufigere hypergranuläre Form (AML M3) und die seltene hypo- (mikro-) granuläre Variante (M3v). Die wichtigsten Merkmale sind in Tabelle 3 dargestellt.

<table>
<thead>
<tr>
<th>Tabelle 3: Charakteristika der Subtypen der APL</th>
</tr>
</thead>
<tbody>
<tr>
<td>APL (hypergranulär, FAB M3)</td>
</tr>
<tr>
<td>Relative Häufigkeit (%)</td>
</tr>
<tr>
<td>Blutbild</td>
</tr>
<tr>
<td>Morphologie</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Zytochemie</td>
</tr>
<tr>
<td>Immunphänotyp¹</td>
</tr>
</tbody>
</table>

Legende:
¹ nach CD Klassifikation - Cluster of Differentiation

5.1.2 Zytogenetik / Molekularbiologie

Sind die typischen morphologischen Merkmale der APL vorhanden, so entspricht der nachweisbare genetische Defekt in der Regel der Translokation t(15;17), bzw. PML/RARA. Wenige Prozent der Patienten haben andere Translokationen, wobei das Gen des Retinsäureresektors auf Chromosom 17 jeweils involviert ist [26, 27]. Die wichtigsten Formen sind im Folgenden aufgelistet:

- t(15;17)(q22;q21) mit Fusion des PML Gens und des Gens für den Retinsäure - Rezeptor alpha (RARA)
- t(11;17)(q23;q21) mit Fusion des PLZF Gens und des RARA Gens
- t(11;17)(q13;q21) mit Fusion des NUMA1 Gens und des RARA Gens
- t(5;17)(q35;q21) mit Fusion des NPM1 Gens und des RARA Gens idem
- t(4;17)(q12;q21) mit Fusion des FIP1L1 Gens und des RARA Gens

5.2 Differenzialdiagnose

Tabelle 4: Differenzialdiagnosen der APL bei peripherer Panzytopenie

<table>
<thead>
<tr>
<th>Andere Formen akuter Leukämie (myeloisch, lymphatisch)</th>
<th>Myelodysplastisches Syndrom</th>
<th>Aplastische Anämie</th>
<th>Osteomyelofibrose</th>
<th>Non-Hodgkin-Lymphom mit Knochenmarkinfiltration</th>
<th>Haarzelleukämie</th>
<th>Hyperspleniesyndrom verschiedener Ursachen</th>
<th>Reaktive/toxische Knochenmarksveränderungen</th>
<th>Vitamin B12-Mangel</th>
<th>Virusinfektionen</th>
<th>Paroxysmale nächtliche Hämoglobinurie (PNH)</th>
<th>Sepsis</th>
</tr>
</thead>
</table>

5.3 Prognostische Faktoren

5.3.1 Frühtod

Trotz Verbesserung der Prognose stellt die hohe Rate an Frühmortalität bereits vor oder kurz nach Therapieeintritt weiterhin eine große Herausforderung in der Behandlung der APL dar. Bedeutende Risikofaktoren an einem Frühtod zu versterben sind höherees Alter (60 Jahre oder älter) und hohe Leukozyten-/Blastenzahl vor Therapiebeginn. Aber auch ein erhöhter Kreatininwert und männliches Geschlecht konnten als weitere Risikofaktoren identifiziert werden [16]. Ungünstige prognostische Faktoren mit speziellem Einfluss auf tödliche Blutungskomplikationen werden im Kapitel 6.2.1 detailliert beschrieben.

5.3.2 Rezidivrisiko

Bei Therapie mit ATRA und Anthrazyklinen (AIDA-Protokoll der GIMEMA und PETHEMA) erwies sich die Kombination aus prätherapeutischer Leuko- und Thrombozytenzahl (Sanz-Score) als signifikanter Risikofaktor für das Auftreten eines Rezidivs. Dieser Score unterscheidet drei Risikogruppen, siehe Tabelle 5. Niedriges und intermediäres Risiko (jeweils mit initialer Leukozytenzahl ≤10000/µl) werden üblicherweise unter dem Begriff Standardrisiko zusammengefasst. Bezogen auf die Protokolle mit ATRA und alleiniger Anthrazykintherapie stellt dieser Score einen signifikanten Prognoseparameter dar, der zur Stratifizierung der Therapieintensität verwendet wird [53]. Literaturergebnisse zeigen jedoch auch, dass der Sanz-Score zur Erfassung der Rezidivwahrscheinlichkeit nicht auf Protokolle mit hohen Ara-C-Dosen oder ATO anwendbar ist [1, 31, 34, 47].

Weitere potentiell ungünstige Prognosefaktoren hinsichtlich Remissionsdauer unter herkömmlicher Therapie mit ATRA und Anthrazyklinen sind der Nachweis von FLT3-Längenmutationen, bcr3-Isoform, CD56 Expression und zytogenetischer Zusatzausfällen bei Translokation t(15;17). Es gibt jedoch keine Evidenz für die Verwendung dieser Parameter zur Stratifizierung der Therapie.

Tabelle 5: Prognose-Score der APL (Sanz Score) [53]

<table>
<thead>
<tr>
<th></th>
<th>niedrig</th>
<th>intermediär</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukozyten/µl</td>
<td>< 10000</td>
<td>≤ 10000</td>
<td>> 10000</td>
</tr>
<tr>
<td>Thrombozyten/µl</td>
<td>> 40000</td>
<td>≤ 40000</td>
<td></td>
</tr>
</tbody>
</table>
6 Therapie

6.1 Therapiestruktur

Bereits vor Einleitung der APL-spezifischen Therapie muss auf eine ausreichende Substitutionstherapie zur Stabilisierung der Gerinnungsstörungen und der Thrombozytopenie geachtet werden, siehe Kapitel 6.2.1

6.1.1 Erstlinientherapie

Unabhängig von der Therapiestrategie ist der PCR-Status nach der Konsolidierung von besonderer Bedeutung, da er ein wesentlicher Stratifizierungsparameter für die weitere Therapie ist (siehe Kapitel 6.1.2).
Abbildung 1: Therapie-Algorithmus für die Erstlinientherapie

Die Einzelheiten der aktuellen Therapieempfehlungen der deutschen AML-Intergroup zur Behandlung der APL stehen im Internet über das Kompetenznetz Leukämien als abrufbare PDF-Datei zur Verfügung:

(http://www.kompetenznetz-leukaemie.de/content/aerzte/aml/therapieempfehlungen/apl).

6.1.1.1 Therapie bei Standardrisiko: ATO plus ATRA

6.1.1.1.1 Induktionstherapie - ATO plus ATRA

- In der italienisch-deutschen APL0406-Studie (GIMEMA-SAL-AMLSG) wird ATO plus ATRA täglich bis zum Erreichen der kompletten Remission (max. 60 Tage) verabreicht [40, 46].
- In der britischen Studie AML17-APL, ebenfalls mit ATO plus ATRA, wurden höhere Einzeldosen von ATO an weniger Therapietagen über insgesamt 7 Wochen gegeben [13].

Legende:
1 Risiko-Score, siehe Tabelle 5; 2 ATRA - All-trans-Retinsäure, ATO - Arsentrioxid; 3 RT-PCR – Reverse Transcription Polymerase Chain Reaction.
6.1.1.2 Konsolidierungstherapie - ATO plus ATRA

Die Konsolidierungstherapie besteht jeweils aus vier Zyklen ATO und ATRA und unterscheidet sich je nach Protokoll in der Häufigkeit der Applikationen von ATO und ATRA sowie in der Höhe der Einzeldosis von ATO.

6.1.1.3 Erhaltungstherapie - ATO plus ATRA

Eine Erhaltungstherapie ist nicht vorgesehen.

6.1.2 Therapie bei hohem Risiko: ATRA plus Chemotherapie

6.1.2.1 Induktionstherapie - ATRA plus Chemotherapie

Generell kann man zwei Hauptstrategien bei der Entwicklung der Kombinationen von ATRA und Chemotherapie unterscheiden:

1. ATRA kombiniert mit hohen kumulativen Anthracyklindosen (Daunorubicin-Äquivalenzdosis ca. 650 bis 750 mg/m²; PETHEMA, GIMEMA), deren Intensität nach der Risikozugehörigkeit stratifiziert wird.

Die Langzeitergebnisse deuten darauf hin, dass insbesondere Patienten der Hochrisikogruppe hinsichtlich der Remissionsdauer von einer intensiveren Chemotherapie, insbesondere von höher dosiertem Ara-C profitieren [3, 4, 6, 34, 39, 56].

Die genaue zeitliche Sequenz von ATRA und Chemotherapie richtet sich nach der Leukozytenzahl. Bei Patienten der Hochrisikogruppe mit Leukozyten >10 000/µl sollten ATRA- und Chemotherapie simultan begonnen werden um einen weiteren Anstieg der Leukozyten unter ATRA zu vermeiden. Bei Patienten mit niedrigem und/oder intermediärem Risiko (prätherapeutische Leukozytenzahl ≤10 000/µl), die nicht mit ATO therapiert werden, kann die Chemotherapie ein bis drei Tage nach einer ATRA-Vorphase beginnen, sollte aber bei raschem Leukozytenanstieg unter ATRA umgehend eingeleitet werden [19, 20].

6.1.1.2.2 Konsolidierungstherapie - ATRA plus Chemotherapie

Die Konsolidierungstherapie, dient analog der Therapie der AML der Stabilisierung der Remission. In Abhängigkeit vom gewählten Protokoll sind bis zu drei Konsolidierungszyklen üblich [20, 34, 55].

6.1.1.2.3 Erhaltungstherapie - ATRA plus Chemotherapie

Üblicherweise wird bei Patienten nach Erstlinientherapie mit ATRA und Chemotherapie, die nach der Konsolidierung PCR-negativ sind, eine zweijährige Erhaltungstherapie mit Methotrexat, Purinethol und ATRA oder alternativen Schemata durchgeführt.

Eine autologe oder allogene periphere Blutstammzelltransplantation (PBSZT) ist in erster Remission nicht indiziert, wenn eine molekulare Remission erreicht wurde.

6.1.2 Rezidivierte oder refraktäre APL

Abbildung 2: Algorithmus für die Zweitlinientherapie bei Akuter Promyelozytenleukämie nach vorhergehender Therapie mit ATRA und Chemotherapy

<table>
<thead>
<tr>
<th>Legende:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ATO – Arsentrioxid; ATRA - All-trans- Retinsäure; 2 RT-PCR – Reverse Transcription Polymerase Chain Reaction; 3 SZT – Stammzelltransplantation; 4 in der Regel keine vorherige Chemotherapie mehr erforderlich.</td>
</tr>
</tbody>
</table>

Patienten, die nach Abschluss der Konsolidierungstherapie dauerhaft PCR-positiv bleiben oder ein molekulares oder hämatologisches Rezidiv erleiden, haben auch noch mit einer Zweitlinientherapie eine etwa 50%-ige Chance eine stabile Remission zu erreichen. Aufgrund seiner hohen antileukämischen Effizienz und des günstigen Toxizitätsprofils wird ATO zumindest bei Patienten mit ATRA-plus-Anthrazyklin-basierter Primärtherapie als Therapie der Wahl im Rezidiv angesehen [59, 60]. ATO kann auch im Rezidiv nach vorausgehendem ATO-Einsatz erneut Remissionen induzieren, verliert aber mit der Anzahl der Rezidine und wahrscheinlich auch bei frühem Rezidiv an Wirksamkeit [24, 41].
Üblicherweise besteht die Remissionsinduktion aus einem Kurs ATO plus ATRA, gefolgt von mindestens einem weiteren Konsolidierungskurs mit ATO plus ATRA. Analog der Primärtherapie wird inzwischen zur Stabilisierung der Remission zumeist eine Konsolidierungstherapie analog der Primärtherapie der Standardrisiko APL (s.o.) mit vier Konsolidierungzyklen ATO plus ATRA verabreicht. Für die Postkonsolidierungstherapie gibt es verschiedene Optionen, deren Wahl dem individuellen Fall anzupassen ist, siehe Abbildung 2. Die Datenlage weist auf eine Überlegenheit von nachfolgender Transplantation gegenüber keiner Transplantation hin [15, 22, 23, 38, 54, 62, 64].

In molekularer Remission und bei Vorhandensein eines PCR-negativen Transplantates wird im Allgemeinen die autologe gegenüber der allogenen PBSCT bevorzugt, da die geringere Toxizität der autologen Transplantation den Vorteil der höheren antileukämischen Effizienz des allogenen Ansatzes ausgleicht [15, 22, 30, 45, 49, 54].

6.2 Therapiemodalitäten

6.2.1 Substitutionstherapie zur Stabilisierung bei Blutungsneigung

6.2.2 All-trans-Retinsäure (ATRA)

Bei morphologischem Bild einer APL und dem Vorliegen schwerer plasmatischer Gerinnungsstörungen ist der Therapiebeginn mit ATRA gerechtfertigt bevor die genetische Bestätigung der Diagnose vorliegt. ATRA wird kontinuierlich bis zum Erreichen der kompletten Remission, maximal bis zu 90 Tage verabreicht. Durch eine ATRA-Monotherapie erreichen 80 bis 90% der Patien-
ten mit neu diagnostizierter APL eine komplette Remission. Anhaltende Remissionen nach alleiniger ATRA-Therapie werden jedoch kaum gesehen. Das während der ATRA-Therapie beobachtete APL-Differenzierungssyndrom (früher ATRA-Syndrom) [21] bedarf der frühzeitigen Erkennung und Therapie, siehe Kapitel 6.2.4 ATRA ist obligater Bestandteil der Induktionstherapie bei der APL.

6.2.3 Arsentrioxid

Die Wirkungsentfaltung von ATO ist in etwa 50% der Fälle von einem signifikanten Anstieg der Leukozytenzahl (Hyperleukozytose) und vom Ausschwemmen von Vorstufen der Granulo poese in das periphere Blut begleitet. Eine potenziell gefährliche Nebenwirkung der Therapie ist das APL-Differenzierungssyndrom (ADS) [21], das in bis zu 25% der Fälle beobachtet wird (siehe Kapitel 6.2.6.2). Die mögliche Verlängerung der QT/QTcF-Zeit ggf. verbunden mit Elektrolytverschiebungen von Kalium und Magnesium können eine Dosisreduktion erforderlich machen [18]. Ein Pseudotumor cerebri wird insbesondere bei Kindern und jungen Erwachsenen beobachtet und ist eine potenziell bedrohliche Komplikation [55].

Die Zulassung von ATO erfolgte initial ausschließlich für die rezidivierte/refraktäre APL, wo die Substanz nach wie vor die Therapie der Wahl darstellt [35, 38, 44, 59, 60]. Die Rate an hämatologischer Remission von Patienten im ersten Rezidiv beträgt über 90% und an molekularer Remission etwa 70%. Wahrscheinlich kann über die Hälfte der Patientin im ersten Rezidiv nach herkömmlicher Therapie mit ATRA und Chemotherapie mit ATO kurativ behandelt werden [35, 38].

Aufgrund seiner guten Wirksamkeit im APL-Rezidiv wurde ATO auch in der Primärtherapie untersucht. Daten aus dem Iran und Indien mit ATO-Monotherapie zeigten eine exzellente Wirksamkeit und wurden in den USA bestätigt [17, 24, 43]. Die Integration von ATO in ATRA plus Chemotherapie-basierte Konzepte zeigte, dass ATO als zusätzliche Konsolidierung das Rezidivrisiko reduzierte und die Überlebensrate verbesserte [47]. Weitere Studiendaten zeigten, dass ein erheblicher Teil der Chemotherapie durch ATO ersetzt werden kann, ohne die Ergebnisse zu verschlechtern [31].

In zwei randomisierten Studien bei APL-Patienten mit niedrigem oder intermediärem Risiko (Standard-Risiko) wurde ein komplett chemotherapie-freier Therapieansatz (ATO plus ATRA) mit der herkömmlichen Therapie (ATRA plus Idarubicin/Mitoxantron) verglichen [13, 40, 46]. ATRA plus ATO zeigte sich in beiden Studien hinsichtlich der Rezidivhäufigkeit signifikant überlegen begleitet von einem Überlebensvorteil bei längerer Nachbeobachtung [46]. Auch die Frühodderate war unter ATO geringer. Aufgrund dieser Daten wurde ATO im Herbst 2016 auch für die Therapie der Standardrisiko-APL von der EMA zugelassen Bei Hochrisiko-APL wird der Stellenwert von ATO in einer laufenden europäischen Studie (APOLLO-Studie, NCT02688140) untersucht.
Nach Ergebnissen aus China ist orales Tetra-Arsen-Tetrasulfid hinsichtlich des krankheitsfreien Überlebens ebenso gut wirksam wie intravenös verabreichtes ATO [65]. Orale Arsenverbindungen sind in der EU nicht verfügbar.

Unter Therapie mit ATO sind EKG-Veränderungen mit Verlängerungen der QTcF-Zeit (siehe Kapitel 5.1) und Elektrolytverschiebungen vor allem von Kalium und Magnesium besonders zu beachten. Der Kaliumwert sollte über 4 mmol/l und der Magnesiumwert über 1,8 mg/dl liegen. Regelmäßige EKG Kontrollen sind indiziert. Bei einem QTcF-Intervall von über 500 msec wird die Therapie wegen der Gefahr von Herzrhythmusstörungen (torsade des pointes) unterbrochen [18, 50]. Eine Komedikation mit Medikamenten, welche ebenso wie ATO die QTcF-Zeit verlängern können, sollte unbedingt vermieden werden und bedarf, falls nicht zu umgehen, einer intensivierten EKG-Überwachung.

6.2.4 Chemotherapie

ATRA und Chemotherapie sollen während der Induktionsphase generell simultan verabreicht werden [20]. Dies ist insbesondere bei Hochrisiko-Patienten wichtig, für die ATRA und Chemotherapie weiterhin die Standardtherapie ist.

6.2.5 Molekulares Monitoring

6.2.6 Supportive Therapie

6.2.6.1 Gerinnungsstörungen

6.2.6.2 Hyperleukozytose, APL-Differenzierungssyndrom

Eine typische Nebenerscheinung unter der Behandlung mit ATRA oder ATO ist die Entwicklung einer Hyperleukozytose in der Anfangsphase der Therapie, vor allem bei Patienten mit der APL-Variante. Die Hyperleukozytose wird mit Chemotherapie behandelt. Eine Leukapherese erbrachte in frühen Studien keine befriedigende Kontrolle der Hyperleukozytose und wird deshalb nicht als hilfreich angesehen [21]. Eine potentiell lebensbedrohliche Komplikation unter der Therapie mit ATRA oder ATO ist das sog. APL-Differenzierungssyndrom (ADS, früher ATRA-Syndrom) [21]. Die Hauptsymptome sind:

- Fieber unklarer Genese
- Ödeme / Gewichtszunahme
- Atemnot
- Lungeninfiltrate ohne Hinweis auf eine Infektion
- Pleura- oder Perikarderguss

Zur Prophylaxe eines ADS ist die Verabreichung von Prednisolon 0,5 mg/kg/Tag parallel zu ATO obligater Bestandteil der Therapie. Ein ADS kann zu jedem Zeitpunkt der Therapie mit ATRA oder ATO auftreten. Es wird ausschließlich aufgrund klinischer Kriterien diagnostiziert. Zumeist tritt es innerhalb der ersten 2 Wochen nach Therapiebeginn auf, kann sich aber auch noch später manifestieren. Es ist fast immer, aber nicht obligat, mit einem Anstieg der Leukozytenzahl assoziiert. Durch einen frühen Beginn der Chemotherapie wird das Risiko ein ADS zu entwickeln reduziert. Bei Standardrisiko Patienten, die unter ATO/ATRA eine Leukozytose entwickeln, sollte HU prophylaktisch begonnen werden.

6.2.6.3 Infektionen

Zur Prophylaxe und zur Therapie von Infektionen wird auf die spezifischen Onkopedia Leitlinien der AGIHO Pilzinfektionen - Primärprophylaxe und Febrile Neutropenie hingewiesen.

6.3 Besondere Situationen

6.3.1 APL mit seltenen Translokationen

Die APL mit t(11;17)(q23;q21) (PLZF/RARA) ist in der Regel nicht sensitiv gegenüber der Therapie mit ATRA oder Arsentrioxid. Deshalb in dieser Situation ein Vorgehen wie bei anderen Formen der AML mit Induktion und risikoadaptierter Postremissionstherapie entsprechend Alter, Ansprechens und Komorbidität empfohlen (siehe AML). Die Translokationen t(11;17)(q13;q21) (NUMA/RARA) und t(5;17)(q35;q21) (NPM1/RARA) gelten als ATRA-sensitiv. Bei der Translokation t(5;17) wurde ein Ansprechen auf ATO beobachtet. Bei der Translokation t(4;17) liegen keine Daten zum Therapieansprechen vor.

6.3.2 Ältere Patienten

6.3.3 Schwangerschaft

Die Betreuung von schwangeren APL-Patientinnen muss interdisziplinär erfolgen. Auch bei Diagnose der APL in der Schwangerschaft bestehen Heilungschancen für die Patientin. Entscheidend für das therapeutische Procedere ist das Stadium der Schwangerschaft. Während
bei Erkrankung im ersten Trimenon in der Regel kein erfolgreiches Ende der Schwangerschaft möglich ist, bestehen im zweiten und insbesondere im letzten Trimenon gute Möglichkeiten, diese erfolgreich zu Ende zu führen.

8 Verlaufskontrolle und Nachsorge

8.2 Nachsorge

9 Literatur

18. Fachinformation TRISENOX 1mg/ml, November 2016. http://www.teva.de/index.php?eID=dumpFile&d=f&f=40279&q=g=-1&r=11068%2C11068&token=397b2b3c1d980b90cebb79b1484c4

42. Madan V, Shyamsunder P, Han L et al.: Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 1672-1681, 2016. DOI:10.1038/leu.2016.69

10 Aktive Studien

http://www.kompetenznetz-leukaemie.de

12 Studienergebnisse

• Akute Promyelozytäre Leukämie - Studienergebnisse

13 Zulassungsstatus

• Akute Promyelozytäre Leukämie (APL) - Zulassungsstatus

14 Links

Therapieempfehlung für die Primärtherapie der APL und des Rezidivs: verfügbar über die AML-Studiengruppen und das Kompetenznetz akute und chronische Leukämie

15 Anschriften der Verfasser

Prof. Dr. med. Eva Lengfelder
Universitätsklinikum Mannheim
Medizinische Fakultät Mannheim d. Uni Heidelberg
III. Medizinische Klinik
Theodor-Kutzer-Ufer 1-3
68167 Mannheim
Tel: 0621 383-4115
Fax: 0621 383-4201
eva.lengfelder@umm.de

Dr. Jean-Francois Lambert
Groupement Hospitalier de l'Ouest Lémanique
site de Nyon 10, ch. de Monastier
CH-1260 Nyon Suisse
Tel: 0041 22 994 64 73
jeanfrancois.lambert@ghol.ch
16 Erklärungen zu möglichen Interessenkonflikten

<table>
<thead>
<tr>
<th>Name</th>
<th>Anstellung</th>
<th>Beratung / Gutachten</th>
<th>Aktien / Fonds</th>
<th>Patent / Urheberrecht / Lizenz</th>
<th>Hono- rare</th>
<th>Finanzierung wissenschaftlicher Untersuchungen</th>
<th>Andere finanzielle Beziehungen</th>
<th>Andere mögliche COI ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambert</td>
<td>GHOL, Hôpital de Nyon CHUV – Universitätsklinikum Lausanne</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lengfelder</td>
<td>Medizinische Fakultät Mannheim der Universität Heidelberg</td>
<td>Novartis, Teva</td>
<td>-</td>
<td>-</td>
<td>Novartis, Teva</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nachbaur</td>
<td>Medizinische Universität Innsbruck</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niederwieser</td>
<td>Universitätsklinikum Leipzig</td>
<td>Bayer, Cellectis, Novartis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Platzbecker</td>
<td>Universitätsklinikum Dresden</td>
<td>Teva</td>
<td>-</td>
<td>-</td>
<td>Teva</td>
<td>Teva</td>
<td>Teva</td>
<td>-</td>
</tr>
<tr>
<td>Schlenk</td>
<td>Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Universitätsklinikum Ulm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Celgene, Janssen, Novartis, Pfizer, Teva</td>
<td>AstraZeneca, Janssen, Novartis, Pfizer, Pharma-Mar</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wörmann</td>
<td>DGHO, Charité Universitätsmedizin Berlin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Legende:
1. COI: Conflict of Interest, Interessenkonflikt;
2. - kein Interessenkonflikt