Chronische Myelomonozytäre Leukämie (CMML)

Leitlinie

Empfehlungen der Fachgesellschaft zur Diagnostik und Therapie hämatologischer und onkologischer Erkrankungen
Die Empfehlungen der DGHO für die Diagnostik und Therapie hämatologischer und onkologischer Erkrankungen entbinden die verantwortliche Ärztin / den verantwortlichen Arzt nicht davon, notwendige Diagnostik, Indikationen, Kontraindikationen und Dosierungen im Einzelfall zu überprüfen! Die DGHO übernimmt für Empfehlungen keine Gewähr.
Inhaltsverzeichnis

1 Zusammenfassung ... 3
2 Grundlagen .. 3
 2.2 Epidemiologie .. 3
 2.3 Pathogenese .. 4
 2.4 Risikofaktoren .. 4
3 Vorbeugung und Früherkennung .. 4
4 Klinisches Bild .. 5
 4.1 Symptome .. 5
 4.2 Inzidentelle Befunde .. 5
5 Diagnose ... 6
 5.1 Diagnose-Kriterien .. 6
 5.2 Diagnostik ... 7
 5.2.1 Erstdiagnose ... 7
 5.2.2 Krankheitsverlauf ... 7
 5.2.3 Seltene Komplikationen .. 7
 5.3 Klassifikation ... 8
 5.4 Prognostische Faktoren .. 8
 5.5 Differenzialdiagnose .. 10
 5.6 Allgemeinzustand und Komorbidität 11
6 Therapie ... 11
 6.1 Therapiestruktur ... 11
 6.1.1 Therapie der symptomatischen bzw. fortgeschrittenen CMML 12
 6.1.1.1 Supportive Therapie ... 12
 6.1.1.1.1 Transfusionen ... 13
 6.1.1.1.2 Antibiotika und Impfungen 13
 6.1.1.1.3 Eisenchelatoren ... 13
 6.1.1.1.4 Hämatopoetische Wachstumsfaktoren 13
 6.1.1.2 Antineoplastische Therapie 14
 6.1.1.2.1 Intensive Chemotherapie .. 14
 6.1.1.2.2 Nicht-intensive Chemotherapie 14
 6.1.1.2.3 Epigenetische Therapie .. 14
 6.1.1.2.4 Ruxolitinib ... 15
 6.1.1.2.5 Allogene Stammzelltransplantation 15
 6.1.1.2.6 Autologe Stammzelltransplantation 15
6.1.1.2.6 Verlaufskontrolle und Nachsorge 16
 8.1 Verlaufskontrolle ... 16
9 Literatur ... 16
10 Aktive Studien
12 Studienergebnisse
13 Zulassungsstatus
14 Links
15 Anschriften der Experten
16 Angaben zu möglichen Interessenkonflikten
Chronische Myelomonocytaire Leukämie (CMML)

Hinweise zu COVID-19 finden Sie in der COVID-19-Leitlinie, im Kapitel 6.2.15
ICD-10: C93.10, C93.11
Stand: Januar 2018

Erstellung der Leitlinie:
- Regelwerk
- Interessenkonflikte

Autoren: Ulrich Germing, Sabine Blum, Tobias Boch, Michael Lübbert, Georgia Metzgeroth, Uwe Platzbecker, Michael Pfeilstöckert

1 Zusammenfassung

2 Grundlagen

2.2 Epidemiologie

Die chronischen myelomonocytären Leukämien (CMML) sind wie alle myeloischen Neoplasien/Myelodysplasien seltene Erkrankungen. Bei einem Anteil von etwa 20% der MDS Erkrankungen liegt eine Inzidenz um die 0,5-1,0 pro 100.000 pro Jahr vor. Es sind mehr Männer als Frauen betroffen (Verhältnis etwa 3:1), die Ursache ist unklar. Das mediane Alter bei Diagnose liegt bei 76 Jahren. Daraus ergibt sich bei den gegenwärtigen Veränderungen der Bevölkerungsstruktur und höherer Inzidenz in fortgeschrittenem Alter eine zunehmende Prävalenz [1]. Nur 3% der CMML Patienten sind unter 50 Jahre alt, so dass das Alter per se ein Risikofaktor für die Entwicklung einer CMML darstellt.

Etwa 10% der CMML Fälle sind therapie-assoziiert (t-CMML) und sind, vergleichbar mit dem therapie-assoziierten MDS, mit einer Hochrisiko-Zytogenetik und einer schlechten Prognose

Des Weiteren scheinen chronische Entzündungen (z.B. Autoimmunerkrankungen wie die Polyarthritis rheumatica) die Entstehung einer CMML zu begünstigen. Raucher und ehemalige Raucher scheinen gegenüber Nichtrauchern ein höheres Risiko für eine CMML zu haben. Eine hereditäre Erkrankung als Ursache für eine CMML des Erwachsenen ist nicht bekannt, wenn gleich es seltene Keimbahnmutationen gibt, die mit einer CMML assoziiert sein können [7, 8].

2.3 Pathogenese

Die CMML sind maligne Erkrankungen, die sich durch eine klonale Hämatopoese im Knochenmark auszeichnen. In über 90% der Patienten lassen sich mit NGS (next generation sequencing) eine oder mehrere Mutationen finden. Die Mutationen lassen sich in 4 folgenden Kategorien zuordnen:

- epigenetische Regulatorgene, wie z.B. EZH2, ASXL1, TET2, DNMT3A, IDH1 und IDH2,
- Mutationen im Spliceosom wie SF3B1, SRSF2, U2AF1 und andere,
- Mutationen, die DNA Reparaturmechanismen betreffen (TP53),
- Mutationen die Tyrosinkasen und Transkriptionsfaktoren betreffen wie JAK2, KRAS, NRAS, RUNX1.

Es ist wahrscheinlich, dass mehrere Mutationen zeitlich versetzt entstehen, wobei die ersten Mutationen (driver mutations) häufig im TET2 Gen oder im ASXL-1 Gen zu finden sind. Danach kommt es zu einem zweiten und vermutlich oft auch weiteren Ereignissen, die dann die Erkrankung auslösen. Die häufigsten Mutationen, die bei der CMML gefunden werden, sind TET2 (60%), SRSF2 (50%), ASXL-1 (40%) und RAS (10-30%). Bezüglich des Phänotyps den CMML mit immer einhergehender Monozytose besteht eine Theorie darin, dass unreife dysplastische Granulozyten des CMML Klon-Defensin Proteine in grosser Menge produzieren, welche dann die Makrophagen Colony-Stimulating-Faktor induzierte Differenzierung von monozytären Zellen inhibieren, was zum Vorhandensein unreifer Monozyten führt [2, 3].

2.4 Risikofaktoren

Anerkannte Risikofaktoren sind Exposition mit organischen Lösungsmitteln, vorherige Strahlentherapie, Radioiodtherapie und Chemotherapie. Benzol ist in einer Kohortenstudie nicht als Risikofaktor identifiziert worden, wird aber kontrovers diskutiert, da in manchen Studien Zigarettenrauchen mit Benzol als wesentlicher Noxe als Risikofaktor identifiziert wird und Benzol ein Hauptprodukt ist, das beim Rauchen anfällt. Bei Verdacht auf eine relevante berufliche Exposition des Patienten mit organischen Lösungsmitteln sollte eine Meldung an die Berufsgenossenschaft erfolgen [4, 5, 6].

3 Vorbeugung und Früherkennung

Für die CMML gibt es keine Möglichkeit der Vorbeugung. In der Regel können Noxen, wie z.B. eine Chemo- oder Strahlentherapie, die aufgrund einer anderen schwerwiegenden Erkrankung indiziert sind, nicht wegen der potentiellen Möglichkeit nach Jahren eine CMML als Zweitneopla-
Klinisches Bild

4.1 Symptome

Häufiger als beim MDS besteht bei der CMML eine Assoziation zu Autoimmunerkrankungen. In etwa 20% der Fälle liegt bei der CMML eine Autoimmunerkrankung vor, wobei Vaskulitiden, idio-pathische Thrombozytopenie (ITP), Psoriasis, rheumatoide Polyarthritis und die neutrophile Dermatose (Sweet Syndrom) am häufigsten beschrieben sind. Autoimmunphänomene können der Erstdiagnose einer CMML um Jahre vorausgehen.

4.2 Inzidentele Befunde

Eine Thrombozytopenie bei Patienten mit einer CMML muss nicht zwingend Ausdruck einer Knochenmarkinsuffizienz im Rahmen der Dysplasie oder einer Verdrängung sein, sondern kann in seltenen Fällen durch eine klassische ITP bedingt sein, die auch Jahre nach der Diagnose der CMML auftreten kann [8, 9]. In der Regel zeigen diese Patienten ein gutes Ansprechen auf Steroide.
5 Diagnose

5.1 Diagnose-Kriterien

Tabelle 1: CMML-Diagnosekriterien nach WHO 2016

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistierende Monozytose im peripheren Blut (>1 G/l) über 3 Monate, die > 10% der Leukozyten umfassen</td>
<td>keine Berücksichtigung der Knochenmarksmonozytenzahl</td>
</tr>
<tr>
<td>Ausschluss aller reaktiver Ursachen</td>
<td></td>
</tr>
<tr>
<td>Ausschluss BCR-ABL positive CML, PMF, PV und ET</td>
<td></td>
</tr>
<tr>
<td>Ausschluss PDGFRA PDGFRß, FGFR1, keine PC1-jAK2</td>
<td>sollte bei Fällen mit Eosinophilie ausgeschlossen werden</td>
</tr>
<tr>
<td><20% Blasten inkl. Promonozyten in Blut und Knochenmark</td>
<td></td>
</tr>
<tr>
<td>Dysplasie einer oder mehrerer Zellreihen (je >10%)</td>
<td></td>
</tr>
<tr>
<td>erworbene, klonale Aberrationen in den blutbildenden Zellen (TET2, SRSF2, ASXL1, SETBP1)</td>
<td></td>
</tr>
</tbody>
</table>
5.2 Diagnostik

5.2.1 Erstdiagnose

Tabelle 2: Diagnostik der CMML

<table>
<thead>
<tr>
<th>Methode</th>
<th>Kriterien</th>
<th>Wichtigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheres Blut</td>
<td>• Beurteilung von Dysplasien der Granulozyten und Thrombozyten</td>
<td>obligat</td>
</tr>
<tr>
<td></td>
<td>• Quantifizierung der Zellzahlen und der Monozyten und Blasten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beurteilung von Dysplasien der Erythropoese, Granulozytose, Megakaryo-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ypoese</td>
<td></td>
</tr>
<tr>
<td>Knochenmarkaspirat</td>
<td>• Quantifizierung des Blastenanteils</td>
<td>obligat</td>
</tr>
<tr>
<td></td>
<td>• Esterasefärbung zur Abschätzung des Monozytenanteils</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eisenfärbung zum Nachweis von Ringsideroblasten</td>
<td></td>
</tr>
<tr>
<td>Knochenmarkbiopsie</td>
<td>• Abschätzung der Zellularität und Fibrose</td>
<td>obligat</td>
</tr>
<tr>
<td>Zytogenetik</td>
<td>• Erkennen von erworbenen Aberrationen</td>
<td>obligat</td>
</tr>
<tr>
<td>FISH</td>
<td>• bei unzureichenden Bänderungsanalyse Nachweis typischer chromosomesa-</td>
<td>obligat, falls konventionelle Zytogenetik nicht möglich</td>
</tr>
<tr>
<td></td>
<td>ler Aberrationen</td>
<td></td>
</tr>
<tr>
<td>Mutationsanalyse von CMM-assozierten Genen</td>
<td>• Nachweis von somatischen Mutationen</td>
<td>empfohlen</td>
</tr>
<tr>
<td></td>
<td>• diagnostisch: BCR-ABL, PDGFR a und b, FGFR1, PCM1-JAK2, SRSF2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• prognostisch: NRAS, RUNX1, ASXL1, SETBP1</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2 Krankheitsverlauf

5.2.3 Seltene Komplikationen

Häufiger als bei anderen myeloischen Neoplasien findet man Assoziationen der CMML mit Autoimmungesehehen verschiedenster Art.
5.3 Klassifikation

<table>
<thead>
<tr>
<th>Typ</th>
<th>Blut</th>
<th>Knochenmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronische Myelomonocytaire Leukämie 0 (CMML 0)</td>
<td><2 % Blasten Uni- oder Bizytopenie Monozyten >1000/µl, Monozyten >10 % der Leukozytenzahl, keine Auerstäbchen</td>
<td><5 % Blasten, Dysplasien in >10 % der Zellen in 1-3 Reihen, keine Auerstäbchen kein BCR-ABL, PDGFR a oder b, FGFR1, PCM1-JAK2</td>
</tr>
<tr>
<td>Chronische Myelomonocytaire Leukämie I (CMML I)</td>
<td>2-4 % Blasten Uni- oder Bizytopenie Monozyten >1000/µl, Monozyten >10 % der Leukozytenzahl, keine Auerstäbchen</td>
<td>6-9 % Blasten, Dysplasien in >10 % der Zellen in 1-3 Reihen, keine Auerstäbchen kein BCR-ABL, PDGFR a oder b, FGFR1, PCM1-JAK2</td>
</tr>
<tr>
<td>Chronische Myelomonocytaire Leukämie II (CMML II)</td>
<td>5-19 % Blasten Uni- oder Bizytopenie Monozyten >1000/µl Monozyten >10 % der Leukozytenzahl Auerstäbchen möglich</td>
<td>10-19 % Blasten, Dysplasien in >10 % der Zellen in 1-3 Reihen, Auerstäbchen möglich kein BCR-ABL, PDGFR a oder b, FGFR1, PCM1-JAK2</td>
</tr>
</tbody>
</table>

5.4 Prognostische Faktoren

Tabelle 4: CPSS molekular [22]

<table>
<thead>
<tr>
<th>Score</th>
<th>zytogenetische Risikogruppe</th>
<th>ASXL1</th>
<th>NRAS</th>
<th>RUNX1</th>
<th>SETBP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Niedrig</td>
<td>Unmutiert</td>
<td>Unmutiert</td>
<td>unmutiert</td>
<td>unmutiert</td>
</tr>
<tr>
<td>1</td>
<td>Intermediär</td>
<td>Mutiert</td>
<td>Mutiert</td>
<td>mutiert</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hoch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zytogenetische Risikogruppen

- **Niedrig**: Normal, -Y
- **Intermediär**: andere Anomalien
- **Hoch**: +8, komplexer Karyotyp und Anomalien von Chromosom 7

Genetischer Score

<table>
<thead>
<tr>
<th>Score</th>
<th>Genetische Risikogruppe</th>
<th>KM Blasten</th>
<th>Leukozyten</th>
<th>Transfusionsbedarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Niedrig</td>
<td><5%</td>
<td><13000 µl</td>
<td>nein</td>
</tr>
<tr>
<td>1</td>
<td>Intermed.1</td>
<td>≥5%</td>
<td>≥13000 µl</td>
<td>ja</td>
</tr>
<tr>
<td>2</td>
<td>Intermed.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hoch</td>
<td></td>
<td></td>
<td>Transfusionsbedarf, definiert als ≥2 EK alle 8 Wochen über 4 Monate</td>
</tr>
</tbody>
</table>

CPSS molekular Risikogruppen

- **Niedrigrisiko**: 0
- **Intermediäres Risiko 1**: 1
- **Intermediäres Risiko 2**: 2-3
- **Hochrisiko**: ≥4
Tabelle 5: CPSS [21]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO Typ</td>
<td></td>
</tr>
<tr>
<td>CMML1</td>
<td>0</td>
</tr>
<tr>
<td>CMML2</td>
<td>1</td>
</tr>
<tr>
<td>FAB Typ (Leukozytenzahl)</td>
<td><13.000/µl</td>
</tr>
<tr>
<td>Zytogenetik</td>
<td></td>
</tr>
<tr>
<td>Niedrig</td>
<td>0</td>
</tr>
<tr>
<td>Intermediär</td>
<td>1</td>
</tr>
<tr>
<td>Intermediär2</td>
<td>2-3</td>
</tr>
<tr>
<td>Hoch</td>
<td>4-5</td>
</tr>
</tbody>
</table>

CPSS Risikogruppen

Niedrig	0
Intermediär1	1
Intermediär2	2-3
Hoch	4-5

Legende:
Transfusionsbedarf definiert als ≥ 2 EK alle 8 Wochen über 4 Monate

5.5 Differenzialdiagnose

An klonalen hämatologischen Neoplasien, die differenzialdiagnostisch in Frage kommen, sind die anderen MDS und MPN Formen, speziell die atypische CML und PMF zu nennen. Sehr selten aber therapeutisch relevant ist die Diagnose von MPN mit PDGFRα oder β rearrangements, aber auch an die Haarzell-Leukämie (Splenomegalie und Panzytopenie) und LGL Leukämien ist zu denken. Eine Monozytose kann auch im Übergang von MDS oder MPN in M4 oder M5 AML auftreten und bei der systemischem Mastozytose (KIT D816V Mutation). Differenzialdiagnosen und geeignete Diagnoseverfahren sind in Tabelle 6 zusammengefasst.
5.6 Allgemeinzustand und Komorbidität

6 Therapie

6.1 Therapiestruktur

Abbildung 1: Therapie der Chronischen Myelomonozytären Leukämie

6.1.1 Supportive Therapie

6.1.1.1.1 Transfusionen

Hauptbestandteil der supportiven Therapie ist die Transfusion von Erythrozytenkonzentraten in Abhängigkeit vom klinischen Zustand (nicht in Abhängigkeit vom Hb-Wert; Ausnahme: Patienten mit schwerer koronarer Herzkrankheit und/oder anderen schweren Begleiterkrankungen sollten mit dem Hb-Wert über 10 g/dl gehalten werden).

Klinisch signifikante Blutungen sind vor allem ab einem Schwellenwert von < 10G/l Thrombozyten zu erwarten, wenngleich CMML Patienten auch mit höheren Thrombozytenzahlen zu Blutungen neigen können. Die Substitution von Thrombozytenkonzentraten sollte wenn möglich, nicht prophylaktisch erfolgen (Ausnahme: hohes Fieber, schwere Infektion) sondern nur im Falle von klinischen Blutungszeichen (Gefahr der Allo-Immunisierung). Dabei muss in jedem Fall die Therapieentscheidung individuell an die Gegebenheiten des Patienten und der versorgenden Einrichtung (Praxis, Spezialambulanz mit Notfallversorgung etc.) angepasst werden.

6.1.1.1.2 Antibiotika und Impfungen

Die Rekompensation von Begleiterkrankungen (Lungenerkrankungen, Herzerkrankungen etc.) ist wichtiger Teil der Gesamttherapie.

6.1.1.1.3 Eisenchelatoren

Polytransfundierte Patienten sind längerfristig durch die begleitende sekundäre Hämochromatose (vor allem Kardiomyopathie) bedroht. Deshalb kann bei Patienten mit einer Lebenserwartung von mehr als 2 Jahren, die mindestens 20 Erythrozytenkonzentrate erhalten bzw. einen Serumferritinspiegel von >1000 ng/ml haben, eine Therapie mit Eisenchelatoren erwogen werden (Evidenzstärke IIa, Empfehlungsgrad D).

6.1.1.1.4 Hämatopoetische Wachstumsfaktoren

Die Therapie mit Erythropoese stimulierenden Faktoren (ESF, klassisch: Erythropoetin 150–300 U/kg KG 3-mal/Woche s. c. bzw. 500 U/kg wöchentlich s. c.; Verzögerungserthropoetin: 150 µg bzw. 300 µg wöchentlich s. c.) sollte bei folgenden anämischen Patienten erwogen werden:

- Erythropoetinspiegel <200 IE/ml
- geringe Transfusionsabhängigkeit (maximal 2 EK in 8 Wochen)
- keine Blastenvermehrung >10%
- dysplastische Variante der CMML

(Evidenzstärke Ib, Empfehlungsgrad A) [15, 16]. In der Regel ist das Ansprechen nach spätestens 6 Monaten Therapie zu erwarten. Bleibt es aus, sollte die Behandlung beendet werden. Die Verfügbarkeit von thrombopoetischen Wachstumsfaktoren (Romiplostim, Eltrombopag) bietet die Möglichkeit, die schwere Thrombozytopenie bei Niedrigrisiko CMML-Patienten zu behandeln.
Allerdings sind diese nicht zugelassen und sollten deshalb nur innerhalb von klinischen Studien eingesetzt werden.

6.1.1.2 Antineoplastische Therapie

6.1.1.2.1 Intensive Chemotherapie

6.1.1.2.2 Nicht-intensive Chemotherapie

Für viele Patienten mit proliferativer CMML stellt Hydroxycarbamid die zu bevorzugende Standardtherapie zur Kontrolle der Proliferation incl. Splenomegalie dar. In der bisher einzigen randomisierten Studie [31] konnte ein Überlebensvorteil gegenüber Etoposid gezeigt werden. Weitere nicht intensive Chemotherapie wie niedrig dosiertes Cytarabin (20 mg/m²/d Tag 1-14) oder niedrig dosiertes Melphalan (2 mg) wurde in der Vergangenheit in Ermangelung besserer Alternativen bei Patienten mit fortgeschrittenem CMML eingesetzt bzw. in kleinen zumeist Phase II Studien geprüft. Die Verfügbarkeit demethylierender Substanzen bietet möglicherweise eine weitere Therapieoption.

6.1.1.2.3 Epigenetische Therapie

ment (also von Azacitidin auf Decitabin bzw. visce vera) nicht grundlegend empfohlen, kann jedoch in erneut ein Ansprechen induzieren.

6.1.1.2.4 Ruxolitinib

6.1.1.2.5 Allogene Stammzelltransplantation

Zum aktuellen Zeitpunkt bleibt die allogene SZT die einzige kurative Therapieoption für CMML Patienten. Da es sich hierbei um eine Therapie handelt, die mit steigendem Alter seltener angewandt wird, ist im Vergleich der Überlebens dieser transplantierten Patienten mit nicht transplantierten Patienten sicher ein Bias zu berücksichtigen, da es sich um jüngere Patienten und solche mit besserem Allgemeinzustand handelt und diese beiden Punkte per se wesentlichen Einfluss auf das Gesamtüberleben haben. Die Vorteile müssen gegen die nicht CMML-spezifischen Nachteile einer allogenen SZT aufgewogen werden. Zum jetzigen Zeitpunkt liegt keine Studie vor, die Patienten in einen Transplantationsarm versus eine anders geartete Therapie randomisiert.

6.1.1.2.6 Autologe Stammzelltransplantation

Die autologe SZT ist keine Therapieoption für Patienten mit CMML.
8 Verlaufskontrolle und Nachsorge

8.1 Verlaufskontrolle

Die Verlaufskontrolle einer CMML nach allogener SZT unterscheidet sich nicht wesentlich von der Verlaufskontrolle anderer transplantierter Hämopathien. Es ist zentrumsspezifischen Guidelinen zu folgen, die häufig ein vierteljährliches Follow-up im ersten, ein viermonatliches Follow-up im zweiten und ein halbjährliches Follow-up in den darauffolgenden Jahren vorsehen. Hierbei sollte eine Chimärismusanalyse, eine Zytologie, eine Histologie, sowie eine MRD Verfolgung der CMML spezifischen initialen Veränderungen (Zytometrie der anomalen Monozyten und Blasten, Karyotypanomalien, Mutationen in NGS und Molekularbiologie) erfolgen, um ein molekulares Rezidiv möglichst frühzeitig zu erkennen und diesem vor zytologischem Rezidiv begegnen zu können. Dies kann zum Beispiel durch Entzug der Immunsuppression, Transfusion von Donorlymphozyten und hypomethylierenden Therapie geschehen. Es sollten nach allogener Transplantation regelmäßige dermatologische, kardiologische und gynäkologische (bei Frauen) Untersuchungen vorgenommen werden, um Sekundärmißstände nach allogener SZT frühzeitig zu entdecken. Auch nachdem der Patient als „geheilt“ gilt, sollte regelmässig, mindestens einmal jährlich, ein Differenzialblutbild erstellt werden, um ein Rezidiv, ein sekundäres MDS oder eine sekundäre Leukämie frühzeitig zu erkennen. Regelmässige Densitometrien sind ebenfalls angezeigt.

9 Literatur

10 Aktive Studien

Therapieprotokoll der Dakotastudie: http://www.emsco.eu/clinical-trials/
12 Studienergebnisse

- Chronische Myelomonozytäre Leukämie - Studienergebnisse (randomisierte Phase II Studien, Phase III Studien, Metaanalysen)

13 Zulassungsstatus

- Chronische Myelomonozytäre Leukämie (CMML) - Zulassungsstatus von Medikamenten

14 Links

www.mdsdiagnosis.com
www.mds-register.de
www.mds-verbund.de
www.emsco.eu

15 Anschriften der Experten

Prof. Dr. med. Ulrich Germing
Universitätsklinikum Düsseldorf
Klinik für Hämatologie, Onkologie und Klinische Immunologie
Moorenstr. 5
40225 Düsseldorf
germing@med.uni-duesseldorf.de

Dr. Sabine Blum
CHUV
Centre hospitalier universitaire vaudois
Rue du Bugnon 21
CH-1011 Lausanne, Vaud, Suisse
sabine.blum@chuv.ch

Dr. med. Tobias Boch
Universitätsmedizin Mannheim
III. Medizinische Klinik
Theodor-Kutzer-Ufer 1-3
68167 Mannheim
tobias.boch@umm.de

Prof. Dr. med. Michael Lübbert
Albert-Ludwigs-Universität
Medizinische Universitätsklinik und Poliklinik
Abteilung Hämatologie u. Onkologie
Hugstetter Str. 55
79106 Freiburg
michael.luebbert@uniklinik-freiburg.de
Prof. Dr. med. Georgia Metzgeroth
Universitätsklinikum Mannheim
Medizinische Klinik III
Hämatologie und Intern. Onkologie
Theodor-Kutzer-Ufer 1-3
68167 Mannheim
georgia.metzgeroth@umm.de

Prof. Dr. med. Uwe Platzbecker
Universitätsklinikum Leipzig
Medizinische Klinik und Poliklinik I
Hämatologie und Zelltherapie
Liebigstr. 22, Haus 7
04103 Leipzig
Uwe.Platzbecker@medizin.uni-leipzig.de

Prof. Dr. Michael Pfeilstöcker
Hanusch-Krankenhaus
3. Medizinische Abteilung - Hämatologie / Onkologie
Heinrich-Collin-Str. 30
A-1140 Wien
hkh.3.med@wgkk.at

16 Angaben zu möglichen Interessenkonflikten