



## Therapie des AML Rezidivs nach allo-HSZT – Standards und neue Studien

### **Prof. Robert Zeiser**

Department of Hematology, Oncology and Stem Cell Transplantation Freiburg University Medical Center

## Disclosures

Honorare von Novartis, Incyte, Sanofi, MNK, VectivBio, Medac

# Causes of death after allo-HCT (>day 100 post transpant)





## **Standard Therapie**

#### Tabelle 2: Erhaltungstherapie und prophylaktische Interventionen bei AML und MDS nach alllo-HSCT

| Intervention                   | Ausgewählte Details                                                                                                                                                                                 | Effekt                                                                                                                                                                                                                         | Ref.     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| DLI                            | prophylaktische DLI ab ≥120 Tage nach allo-<br>HSZT, bei beendeter Immunsuppression 30<br>Tage und fehlender GvHD >1° und Infektion                                                                 | Überlebensvorteil v. a. für high-risk AML<br>(matched-pair Analysen)                                                                                                                                                           | [21]     |
| Sorafenib*                     | Erhaltungstherapie bei FLT3-ITD/TKD, 2x<br>200-400mg/d ab Tag +60 bis +120, Dauer 24<br>Monate                                                                                                      | signifikanter OS und PFS Vorteil ohne rele-<br>vante Zunahme GvHD (Placebo-kontrol-<br>liert, randomisiert, Phase 2/3 Studien)                                                                                                 | [22, 23] |
| Gilteritinib*                  | Erhaltungstherapie bei FLT3-ITD, 120mg/Tag<br>über 2 Jahre                                                                                                                                          | keine Verbesserung von OS und PFS in<br>Gesamtkohorte aber besseres 2-J-PFS bei<br>Patienten mit positiver MRD vor (prophy-<br>laktisch) oder nach allo-HSZT (präemptiv)<br>(Phase 3, randomisiert, Placebo-kontrol-<br>liert) | [24]     |
| Quizartinib*                   | als Erhaltungstherapie in 1. CR bei FLT3-ITD<br>nach Induktion und Konsolidierung inkl. allo-<br>HSZT; 40mg/d, für 3 Jahre                                                                          | im Gesamtkonzept Verdopplung des medi-<br>anen OS auf 32 Monate durch Hinzunahme<br>von Quizartinib (Phase 3, randomisiert,<br>Placebo-kontrolliert)                                                                           | [25]     |
| HMA* (Azactidin,<br>Decitabin) | Azacitidin: diverse Protokolle, zumeist dosis-<br>reduziert (z. B. 5 Tage, 32mg/m <sup>2</sup> );<br>Decitabin 5mg/m <sup>2</sup> (kombiniert mit G-CSF) Tag<br>1-5 in einer Woche, über 6-8 Wochen | Azacitidin: kein Vorteil bei OS und PFS<br>(offene Phase III-Studie);<br>Decitabin: Vorteil in 2-J-OS (86% vs.<br>70%) (offene Phase 2 Studie) Metanalyse:<br>moderate Verbesserung OS und PFS                                 | [26- 28] |

\* - zum Zeitpunkt der Veröffentlichung liegt keine Zulassung in Deutschland vor

Rezidiv: Prävention und Behandlung Onkopedia Leitlinie Zeiser R et al. 2024

Tabelle 3: Ausgewählte spezifische präemptive und therapeutische Interventionen bei AML und MDS

| Intervention                                                                   | Ausgewählte Details                                                      | Effekt                                                                                                                                                                                                       | Ref.          |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| DLI                                                                            | präemptiv bei MRD-Positivität, ggf. in<br>Kombination mit HMA            | 3-Jahres PFS 52-58%, GvHD-Risiko 20-50%<br>(retrospektive Analysen, keine vergleichenden<br>Studien)                                                                                                         | [29] [30]     |
|                                                                                | therapeutisch in Kombination mit<br>Chemotherapie oder HMA               | DLI oder zweite allo-HSZT (5-J-OS: 15% vs.<br>19%) ähnlich wirksam jedoch mit klarem Vor-<br>teil gegenüber alleiniger Chemotherapie,<br>GvHD-Risiko 20-50% (retrospektive Register-<br>analysen)            | [31]          |
| HMA (Azacitidin, Deci-<br>tabin)                                               | präemptiv oder therapeutisch, ggf. in<br>Kombination mit DLI             | Gesamtansprechrate ca. 50-70%, 2-Jahres-OS<br>ca. 30% (Phase 1/2l Studien, retrospektiv mul-<br>tizentrische Analysen)                                                                                       | [32, 33]      |
| Sorafenib*                                                                     | therapeutisch bei FLT3-ITD/TKD, ggf.<br>in Kombination mit DLI           | bei einigen Patienten erreichte CR (retrospek-<br>tive Fallserien)                                                                                                                                           | [34]          |
| Gilteritinib*                                                                  | bei FLT3-ITD mit positiver MRD nach<br>allo-HSZT, 120mg/Tag über 2 Jahre | Verbesserung von OS und PFS bei Patienten<br>mit positiver MRD nach allo-HSZT (Phase 3,<br>randomisiert, Placebo-kontrolliert)                                                                               | [24]          |
| Lenalidomid plus Aza-<br>citidin                                               | therapeutisch (Lenalidomid 2,5mg<br>oder 5mg/Tag), Kombination mit DLI   | Gesamtansprechrate 56%, 1-J-OS 65%, aGvHD<br>(II-IV) 24%, moderate/schwere cGvHD 28%<br>(prospektiv multizentrische Studie)                                                                                  | [35]          |
| Venetoclax*                                                                    | therapeutisch, Kombination Azaciti-<br>dine und Venetoclax               | mögliche Wirksamkeit und tolerable Toxizität,<br>keine prospektiven Studien nach allogener SZT                                                                                                               | [36]          |
| Chemotherapie                                                                  | s. Onkopedia AML, MDS                                                    | höhere KM-Toxizität, kein erhöhtes GvHD-Risiko                                                                                                                                                               |               |
| Zweite allo-HSZT                                                               | therapeutisch, ggf. nach Induktion<br>einer erneuten Remission           | 2-Jahres-OS 18-34%, beste Ergebnisse bei<br>Rezidiv >6 Monate nach erster allo-HSZT und<br>CR vor zweiter allo-HSZT; Relevanz Spender-<br>wechsel unklar (retrospektive Registeranaly-<br>sen, Metananalyse) | [37, 38]      |
| CTLA4 / PD1 / PD-L1<br>Inhibition*                                             | therapeutisch                                                            | mögliche Wirksamkeit, jedoch hohes GvHD-<br>Risiko (kleinen, prospektiven und retrospekti-<br>ven Studien)                                                                                                   | [39- 41] [42] |
| Decitabine plus<br>CTLA-4 Inhibition /<br>Azacitidin- plus PD-1<br>Inhibition* | therapeutisch bei hämatologischem<br>AML Rezidiv                         | Phase 2 Studie, Ansprechen: CR/PR: 25%, SD:<br>25%; Immunphänotyp korreliert mit Anspre-<br>chen                                                                                                             | [43, 44]      |
| Enasidenib                                                                     | therapeutisch bei IDH2-Mutation                                          | mögliche Wirksamkeit (kleine prospektive Stu-<br>die)                                                                                                                                                        | [45]          |
| Ivosidenib                                                                     | therapeutisch bei IDH1-Mutation                                          | mögliche Wirksamkeit (kleine prospektive Stu-<br>die)                                                                                                                                                        | [46]          |

Legende:

\* - Zum Zeitpunkt der Veröffentlichung liegt keine Zulassung in Deutschland vor. Patienten mit rezidivierter oder refraktärer AML mit einer FLT3-Mutation, die vor Transplantation mit Gilteritinib behandelt wurden, können ab 30 Tagen nach Transplantation gem. Fachinformation prophylaktisch weiter behandelt werden

# Why are Donor lymphocyte infusions not more effective?



ASH image bank, AML without maturation Schmid et al, 2007, J Clin Oncology

# Is glycolysis affected in T cells of AML patients upon relapse after allo-HCT?



# Are the findings on human T cells reproducible in cell culture?



-log<sub>10</sub> (adjusted p-value)

### Is the altered metabolism functionally relevant?

Analysis of proliferative capacity and anti-tumor activity



### Is a metabolite responsible for the effect?

Metabolomics of cell culture supernatants and patient sera



In collaboration with AG Pearce and AG Madl

Uhl F et al. Sci Trans Med 2020

### **Can we counteract the T cell impairment?**

### In vitro experiments with NaBi on LA/AML medium challenged T cells



Uhl F et al. Sci Trans Med 2020

### How does NaBi restore metabolic fitness of T cells?

### Intracellular pH



Emission ratio  $\lambda_1/\lambda_2$ 

### Can NaBi antagonize the negative effects of lactic acid?

Lactic acid tracking by <sup>13</sup>C heavy labelled isotope analysis



## Can NaBi change the T cell phenotype in patients?

NaBi treatment in patients with AML relapse post allo-HCT under DLI therapy



Patients n=10

### **Proposed mechanism**



| Intervention                                                                   | Ausgewählte Details                                                      | Effekt                                                                                                                                                                                                       | Ref.          |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| DLI                                                                            | präemptiv bei MRD-Positivität, ggf. in<br>Kombination mit HMA            | 3-Jahres PFS 52-58%, GvHD-Risiko 20-50%<br>(retrospektive Analysen, keine vergleichenden<br>Studien)                                                                                                         | [29] [30]     |
|                                                                                | therapeutisch in Kombination mit<br>Chemotherapie oder HMA               | DLI oder zweite allo-HSZT (5-J-OS: 15% vs.<br>19%) ähnlich wirksam jedoch mit klarem Vor-<br>teil gegenüber alleiniger Chemotherapie,<br>GvHD-Risiko 20-50% (retrospektive Register-<br>analysen)            | [31]          |
| HMA (Azacitidin, Deci-<br>tabin)                                               | präemptiv oder therapeutisch, ggf. in<br>Kombination mit DLI             | Gesamtansprechrate ca. 50-70%, 2-Jahres-OS<br>ca. 30% (Phase 1/2l Studien, retrospektiv mul-<br>tizentrische Analysen)                                                                                       | [32, 33]      |
| Sorafenib*                                                                     | therapeutisch bei FLT3-ITD/TKD, ggf.<br>in Kombination mit DLI           | bei einigen Patienten erreichte CR (retrospek-<br>tive Fallserien)                                                                                                                                           | [34]          |
| Gilteritinib*                                                                  | bei FLT3-ITD mit positiver MRD nach<br>allo-HSZT, 120mg/Tag über 2 Jahre | Verbesserung von OS und PFS bei Patienten<br>mit positiver MRD nach allo-HSZT (Phase 3,<br>randomisiert, Placebo-kontrolliert)                                                                               | [24]          |
| Lenalidomid plus Aza-<br>citidin                                               | therapeutisch (Lenalidomid 2,5mg<br>oder 5mg/Tag), Kombination mit DLI   | Gesamtansprechrate 56%, 1-J-OS 65%, aGvHD<br>(II-IV) 24%, moderate/schwere cGvHD 28%<br>(prospektiv multizentrische Studie)                                                                                  | [35]          |
| Venetoclax*                                                                    | therapeutisch, Kombination Azaciti-<br>dine und Venetoclax               | mögliche Wirksamkeit und tolerable Toxizität,<br>keine prospektiven Studien nach allogener SZT                                                                                                               | [36]          |
| Chemotherapie                                                                  | s. Onkopedia AML, MDS                                                    | höhere KM-Toxizität, kein erhöhtes GvHD-Risiko                                                                                                                                                               |               |
| Zweite allo-HSZT                                                               | therapeutisch, ggf. nach Induktion<br>einer erneuten Remission           | 2-Jahres-OS 18-34%, beste Ergebnisse bei<br>Rezidiv >6 Monate nach erster allo-HSZT und<br>CR vor zweiter allo-HSZT; Relevanz Spender-<br>wechsel unklar (retrospektive Registeranaly-<br>sen, Metananalyse) | [37, 38]      |
| CTLA4 / PD1 / PD-L1<br>Inhibition*                                             | therapeutisch                                                            | mögliche Wirksamkeit, jedoch hohes GvHD-<br>Risiko (kleinen, prospektiven und retrospekti-<br>ven Studien)                                                                                                   | [39- 41] [42] |
| Decitabine plus<br>CTLA-4 Inhibition /<br>Azacitidin- plus PD-1<br>Inhibition* | therapeutisch bei hämatologischem<br>AML Rezidiv                         | Phase 2 Studie, Ansprechen: CR/PR: 25%, SD:<br>25%; Immunphänotyp korreliert mit Anspre-<br>chen                                                                                                             | [43, 44]      |
| Enasidenib                                                                     | therapeutisch bei IDH2-Mutation                                          | mögliche Wirksamkeit (kleine prospektive Stu-<br>die)                                                                                                                                                        | [45]          |
| Ivosidenib                                                                     | therapeutisch bei IDH1-Mutation                                          | mögliche Wirksamkeit (kleine prospektive Stu-<br>die)                                                                                                                                                        | [46]          |

| Tabelle 3: Ausgewanite spezifische praemptive und therapeutische Interventionen bei AML und I | wählte spezifische präemptive und therapeutische Interventionen bei | AML und MDS |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------|
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------|

Legende:

\* - Zum Zeitpunkt der Veröffentlichung liegt keine Zulassung in Deutschland vor. Patienten mit rezidivierter oder refraktärer AML mit einer FLT3-Mutation, die vor Transplantation mit Gilteritinib behandelt wurden, können ab 30 Tagen nach Transplantation gem. Fachinformation prophylaktisch weiter behandelt werden



FLT3-inhibition combined with Tc transfer

-> higher OS compared to T cells or FLT3-Inh alone.

#### medicine

Mathew NR, [...] **Zeiser R**. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD mutant leukemia cells. *Nat Med.* 2018, 24: 282-291

Prophylactic sorafenib treatment.



17

Burchert et al. JCO 2020 (SORMAIN trial)



# Relapse is connected down-regulation of major histocompatibility complex (MHC) class II genes by the AML cells

#### ORIGINAL ARTICLE

#### Immune Escape of Relapsed AML Cells after Allogeneic Transplantation

Matthew J. Christopher, M.D., Ph.D., Allegra A. Petti, Ph.D., Michael P. Rettig, Ph.D., Christopher A. Miller, Ph.D., Ezhilarasi Chendamarai, Ph.D., Eric J. Duncavage, M.D., Jeffery M. Klco, M.D., Ph.D., Nicole M. Helton, B.S., Michelle O'Laughlin, B.S., Catrina C. Fronick, B.S., Robert S. Fulton, M.S., Richard K. Wilson, Ph.D., et al.

> December 13, 2018 N Engl J Med 2018; 379:2330-2341 DOI: 10.1056/NEJMoa1808777

medicine

LETTERS https://doi.org/10.1038/s41591-019-0400-z

# Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation

Cristina Toffalori<sup>1</sup>, Laura Zito<sup>1,21</sup>, Valentina Gambacorta<sup>1,2,21</sup>, Michela Riba<sup>3,21</sup>, Giacomo Oliveira<sup>1,4,19</sup>, Gabriele Bucci<sup>1</sup>,<sup>3</sup>, Matteo Barcella<sup>5</sup>, Orietta Spinelli<sup>1</sup>, <sup>6</sup>, Raffaella Greco<sup>7</sup>, Lara Crucitti<sup>7,20</sup>, Nicoletta Cieri<sup>4,7,20</sup>, Maddalena Noviello<sup>4</sup>, Francesco Manfredi<sup>4</sup>, Elisa Montaldo<sup>8</sup>, Renato Ostuni<sup>1</sup>,<sup>8</sup>, Matteo M. Naldini<sup>9</sup>, Bernhard Gentner<sup>5,9</sup>, Miguel Waterhouse<sup>10</sup>, Robert Zeiser<sup>10</sup>, Jurgen Finke<sup>10</sup>, Maher Hanoun<sup>11</sup>, Dietrich W. Beelen<sup>11</sup>, Ivana Gojo<sup>12</sup>, Leo Luznik<sup>12</sup>, Masahiro Onozawa<sup>13</sup>, Takanori Teshima<sup>13</sup>, Raynier Devillier<sup>14</sup>, Didier Blaise<sup>14</sup>, Constantijn J. M. Halkes<sup>15</sup>, Marieke Griffioen<sup>15</sup>, Matteo G. Carrabba<sup>7</sup>, Massimo Bernardi<sup>7</sup>, Jacopo Peccatori<sup>7</sup>, Cristina Barlassina<sup>5</sup>, Elia Stupka<sup>2,19</sup>, Dejan Lazarevic<sup>10,3</sup>, Giovanni Tonon<sup>3</sup>, Alessandro Rambaldi<sup>6,16</sup>, Davide Cittaro<sup>10,3</sup>, Chiara Bonini<sup>4,17</sup>, Katharina Fleischhauer<sup>1,18</sup>, Fabio Ciceri<sup>717,22</sup> and Luca Vago<sup>1</sup>,<sup>1,7,22\*</sup>

# P53 is frequently downregulated / inactive in AMLs via the overexpression of the p53 negative regulators Mdm2 and Mdm4



Wang, S., Y. Zhao, A. Aguilar, D. Bernard and C.-Y. Yang (2017). "Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges." <u>Cold Spring Harbor perspectives in medicine</u> **7**(5): a026245.

# Is there a connection between MDM2 and the transcriptional activator of MHC class II genes CIITA?



Hypothesis: High MDM2 is connected to low CIITA / MHC II in AML

- is MDM2 a target to increase MHC II?

Ho J .. Zeiser R Blood 2022

# Is there a connection between MDM2-inhibition and MHC class II expression?



### Can we enhance GVL effects by MDM2-inhibition?



#### Ho J .. Zeiser R Blood 2022

# What is the impact of the MDM2 inhibition on T cells during GVL?



#### Ho J .. Zeiser R Blood 2022

# What is the impact of the MDM2 inhibition on T cells during GVL?



### **Open Question:**

Are certain oncogenic mutations connected to high MDM2 levels?



Papaemmanuil E, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016 Jun 9;374(23):2209-2221.

# Which oncogenes induce MDM2?

#### Analysis of transduced bone marrow



primary mBM cells



Ho.J., Zeiser R Blood 2022





# Which oncogenes induce MDM2?

#### Survival study, using transduced bone marrow





INNERE MEDIZINI – HoJ... Zeiser R Blood 2022

KLINIK FÜR



# Oncogenes and tumor suppressor genes investigated in the first funding period



**Genetic alteration** 

Corresponding molecule on immune cells

FLT3-ITD

### Gal-9, CAECAM-1



Nana Talvard-Balland Postdoc

🐸 nana.talvard-

balland@uniklinik-freiburg.de

### Which oncogenic mutations induce TIM-3 ligands?





Talvard-Balland, [...] **Zeiser R**. Oncogene induced TIM-3 ligand expression dictates susceptibility to anti-TIM-3 therapy in mice. *J Clin Invest*. 2024 2024 Jun 25:e177460. doi: 10.1172/JCI177460

# Is the oncogene dependence of Gal9 and CAECAM-1 reproducible in human AML?



# Can we preproduce the enhanced GVL effect when using a clinical grade anti-TIM-3 antibody?



### Does anti-TIM3 Ab treatment affects the metabolism of Tc?



Non-targeted metabolomics (LC-MS)

#### Collaboration with



Petya Apostolova (Basel)



Erika Pearce (Baltimore)



Cabezas-Wallscheid (Freiburg)

# Does genetic deletion of TIM3 affect GVL effects mediated by donor Tc?



Talvard-Balland .. Zeiser R JCI 2024



#### Collaboration with



Vijay Kumar Kuchroo (Boston)



Karen Dixon (Basel)

### **Does genetic deletion of TIM3 in Tc improve exhaustion?**



Collaboration with

Melanie Börries, Geoffroy Andrieux

# Enhancing cancer immunotherapy



### Funding









Deutsche Krebshilfe

# Wilhelm Sander-Stiftung







European Research Council Established by the European Commission

ERC consolidator grant

### **Collaboration partners**

MHH Hannover F Heidel, F Perner

Faculty of Biology, University of Freiburg S. Minguet

Hem/Onc, Univers. of Würzburg A Beilhack

Div of Hematology, Stanford, USA A Bhatt

Department of Microbiology, Harvard Medical School G Pierce

Dpt of Hem/Onc, Freiburg J Duyster, J Finke, M Waterhouse, H Pahl

MPI Freiburg E. Pearce, D O`Sullivan

KMT Essen K Fleischhauer, D Beelen

Dpt of Pathology A Schmitt-Gräff, K Aumann

Dpt of Neuropathology M Prinz

Dpt of Pediatrics/CCI S Ehl University of Minnesota, USA B Blazar

Dana-Farber Cancer Institute, Harvard Medical School J Antin, R Soiffer, P Bachyreddy

Paris University, France G Socie

University of Patras, Greece A Spyridonidis

San Raffaele Institute, Milano, Italy C. Bonini, E Ruggeri, L Vago

Univ of Michigan, Ann Arbor, USA P Reddy

Dpt of Dermatology, University Hospital, Zürich E Contassot, L French

University of Kentucky, USA G Hildebrandt

Mikrobiology/Virology, Frgb G Häcker

## **Thanks to my Team!**

- Dr. Franziska Uhl
- Dr. Sophia Chen
- Dr Petya Apostolova
- Dr. Pashu Dopfer
- Dr. Shaimaa Hamarsheh
- Sandra Duquesne
- Dr Wolfgang Melchinger
- Dr Annika Warncke
- Jenny Ho
- Dominik Schmidt
- Lukas Braun
- Helena Engel
- Enrique De Vega
- Manoja Vinnakota



### Are the effects reproducible in human primary cells?

