

Universitätsmedizin Essen

Universitätsklinikum

Strategien zur MRD-Konversion bei AML

Jahrestagung der DGHO – Basel 2024

PD Dr. med. Christina Rautenberg

Disclosures

- 1. Employment or Leadership Position: -
- 2. Advisory Role or Speaker Honoraria: Pfizer, JAZZ Pharmaceuticals, BMS
- 3. Stock Ownership: -
- 4. Patent, Copyright, Licensing: -
- 5. Financing of Scientific Research: JAZZ Pharmaceuticals
- 6. Travel support: BMS, JAZZ Pharmaceuticals, MEDAC

Agenda

- Background
- Strategies for MRD-Conversion during Course of Treatment
 - Intensive Chemotherapy and Targeted Therapy prior allo-SCT
 - Conditioning during allo-SCT
 - Maintenance and Pre-emptive Therapy post allo-SCT
- Conclusion I/II

Background

The value of MRD negativity appears to be consistent across age groups, AML subtypes, time of MRD assessment, specimen source and MRD detection methods

Background

 $\left(\begin{array}{c} \\ \\ \end{array} \right)$

Strategies for MRD-Conversion during Course of Treatment

Strategies for MRD-Conversion during Course of Treatment

FLT3-Inhibitor based MRD-Conversion

retrospective n=56, median age 51 yrs part of the UK NCRI AML17 and AML19

52 FLT3-ITD, 7 FLT3-TKD, 3 both 80% NPM1, 20% FG

Treatment of molecular failure:

- 68% Gilteritinib
- 20% Sorafenib
- 12% Quizartinib

1/3 > 2 prior lines of therapy 30% prior allo-SCT, >50% prior Mido

60% mol response (≥ 1 Logstufe Reduktion), 45% MRD-neg

lower rate of mol response / MRD-neg. in case of:

- prior FLT3i (48% vs. 75%)
- on FLT3i @mol failure (29% vs. 75%)
- no prior allo-SCT (47% vs. 93%)

FLT3-Inhibitor based MRD-Conversion

median 6 cycles (range 1-43) median Follow-Up 25 months

50% bridged to allo-SCT (n=22)/DLI (n=6) after a median of 2.5 cycles

- FLT3-ITD not stable @relapse, but lost in up to 50% of pts with prior Midostaurin
- FLT3-ITD MRD so far without broad applicability
- TKI-Resistance through Gate-Keeper Co-Mutations

Prospective Phase IIn=48, median age 67 yrs26 mol. Relapse

95% with prior int. CTX, median 3 cycles n=2 with prior allo-SCT

60% NPM1, 40% FLT3-ITD, 40% IDH1/2 2/3 ELN fav risk 1/3 ELN int risk few adv risk

Ven 600mg p.o. d1-28 LDAC 20mg/qm s.c. d1-10 up to 24 cycles, median 4

69% mol response after 2 cycles 46% MRD-neg. after 2 cycles deepening of response up to 54%

med. Follow-Up 25 months med. OS not reached 2yr-OS 67%

d60 landmark analysis

2yr-OS: MRD-neg. 92% MRD-red. 75% no mol resp 25%

18/26 pts with mol rel were transplant-eligible (regarding age, comorbidities, donor availability)

• 12/18 (67%) proceeded to allo-SCT after a median of 3.8 months

unplanned hospital admissions:

- in 9/26 (35%) pts with mol relapse
- for a median of 6 days
- esp. within the first two cycles of therapy
- mainly related to infection (41%), febrile neutropenia (18%) or non-neutropenic fever (9%)

Intensive CTX based MRD-Conversion in NPM1mut/CBF AML

retrospective n=303 CBF or NPM1-mut AML 2010-2019 MRD monitoring in CR1 after 1st line int CTX

266 with FLT3-status:

- 40 FLT3-ITD (Ratio?)
- 2 FLT3-TKD

Total : 303	Molecular relapse	Morphologic relapse	Death without relapse	Death after molecular relapse	Death after morphologic relapse	No event
Diagnosis	95	55	3	0	0	150
Molecular relapse	0	42	0	13	0	40
Morphologic relapse	0	0	0	0	45	52

Characteristic	All relapses (n = 150)	Molecular relapse (n = 53)	Molecular-morphologic relapse (n = 42)	Upfront morphologic relapse (<i>n</i> = 55)
Time from relapse to salvage therapy (IQR), days	33 (14–64)	49 (27–75)	62 (38–132)	10 (4–22)
Type of salvage treatment, n (%)				
Upfront allogeneic HCT	23 (15%)	19 (36%)	2 (5%)	2 (4%)
Intensive chemotherapy	95 (63%)	21 (40%)	33 (79%)	41 (75%)
GO-containing chemotherapy	34 (23%)	10 (19%)	11 (26%)	13 (24%)
Non-intensive chemotherapy	30 (20%)	13 (25%)	5 (12%)	12 (22%)
IDH inhibitors	3 (2%)	2 (4%)	0	1 (2%)
FLT3 inhibitors	8 (5%)	2 (4%)	2 (5%)	4 (7%)
Azacitidine	3 (2%)	1 (2%)	0	2 (4%)
Azacitidine-GO	4 (3%)	4 (8%)	0	0
Azacitidine-venetoclax	5 (3%)	2 (4%)	2 (5%)	1 (2%)
GO	5 (3%)	0	1 (2%)	4 (7%)
Other	2 (1%)	2 (4%)	0	0
No treatment	2 (1%)	0	2 (5%)	0
Allogeneic HCT, n (%)	121 (81%)	45 (85%)	31 (74%)	45 (82%)
Sequential allogeneic HCT	29 (19%)	12 (23%)	8 (19%)	9 (16%)
		_		

Intensive CTX based MRD-Conversion in NPM1mut/CBF AML

Response to salvage therapy in CBF/NPM1-mut AML who receive preemptive treatment

Characteristic	Upfront allogeneic HCT (n=19)	Intensive chemotherapy (n=21)	Non-intensive chemotherapy (n=13)
Time from relapse to treatment (IQR), days	68 (52-105)	41 (26-54)	42 (17-65)
Age at salvage (IQR), years	52 (39-56)	41 (38-53)	48 (43-54)
Level of transcript before salvage (IQR)	1.6 (1.1-16.7)	1.4 (0.3-17.8)	6.0 (1.8-15)
Response after salvage, n (%)			
CR _{MRD-}		11 (52%)	2 (15%)
CR _{MRD-LL}		2 (10%)	0
CR _{MRD+} other than CR _{MRD-LL}		6 (29%)	5 (38%)
Allogeneic HCT, n (%)	19 (100%)	15 (71%)	11 (85%)
Level of transcript before allogeneic HCT (IQR)	1.6 (1.1-16.7)	0.003 (0.001-0.29)	2.5 (0.01-11.3)
Response after allogeneic HCT, n (%)			
CR _{MRD-}	15 (79%)	10 (67%)	5 (45%)
CR _{MRD-LL}	1 (5%)	1 (7%)	2 (18%)
CR _{MRD+} other than CR _{MRD-LL}	1 (5%)	1 (7%)	1 (9%)

Conclusion I

- MRD-Conversion prior allo-SCT is feasible
 - but also reasonable (risk?) and required (benefit)?
- Well-designed prospective trials incorporating new treatment approaches

(e.g. BCL2-/Menin-Inhibition etc.) in MRD-pos disease evaluating MRD clearance compared to proceeding to allo-SCT are needed

Strategies for MRD-Conversion during Course of Treatment

•

۲

MRD-Conversion during allo-SCT

1.0-1.0 -20-51% MRD-positive 0.8 Proportion relapsed Proportion alive 0.8 0.6 MFC MRD 0.6 prior allo-SCT MRDpos/MRDpos 0.4 n=810 0.4 0.2 0.2 0.0-0.0 12 0 9 Ω 6 **MRD-conversion with** Years since day +40allo-SCT in 60-79% CIR by MRD pre/post HSCT 0 MRD -1.0 **MRD** conversion is MRD +/-8 Cumulative incidence 0.2 0.4 0.6 0.8 MRD +/+ NGS MRD associated with improved n=77 outcome (CIR, OS) O 0.0 P<0.001

CIR by MRD pre/post HSCT

8

6

Time (years)

0

2

10

OS by MRD pre/post HSCT

OS by MRD pre/post HSCT

High definition of the second secon

Pre-Transplant MRD and Conditioning (RIC vs. MAC)

- Prospective randomized Phase III RIC vs MAC Trial (BMT CTN 0901)
- NGS, pB prior allo-SCT, n=190

MAC reduces relapse incidence and improves OS in pre-HCT MRD-positive patients CAVE: small numbers in MRD-negative arm, high CIR in RIC-arm, no information on MRD kinetics

Universitätsmedizin Essen

FLAMSA-based RIC vs. Flu-based RIC

- Prospective randomized Phase II FIGARO (Flu-based RIC vs. FLAMSA-Bu)
- AML in CR1/2, primary refractory, high risk MDS
- MFC, BM prior allo-SCT

Universitätsmedizin Essen

No interaction between MRD-status and conditioning intensity regarding CIR and OS No difference in post-transplant MRD-clearance d+42 among both treatment arms

1.0

0.8

0.6

0.4

0.2

0.0

RIC_other

RIC_with_Mel 174

0

230

p = 0.37

Number at risk

12

171

139

24

123

100

Melphalan-based RIC

MRD negative

36

65

51

1.0 RIC_other — RIC_other - RIC_with_Mel - RIC_with_Mel 0.8 Survival probability 0.6 0.4 p = 0.0120.2 -

MRD positive

CIBMTR pre-MEASURE cohort (n=1075 pts)

Melphalan-based RIC

- Retrospective, n=537
- AML CR1 allografted 2013-2019
- FLT3-ITD NGS, pB prior allo-SCT

MRD positive

RIC/NMA

(VAF≥ 0.01%),

MRD positive

(0% < VAF < 0.01%),

MRD positive

MAC/Mel

(VAF ≥0.01%),

MRD negative,

RIC/NMA

Melphalan-containing RIC may improve survival in MRD positive patients before allo-SCT

MRD positive

RIC/NMA

(0% < VAF < 0.01%),

MAC/Mel

MRD negative,

Pre-Transplant MRD and Post-transplant Chimerism

- Achievement of full donor T-cell chimerism (FDTCC) 3 months after allo-SCT is...
 - Independent of MRD-status and Conditioning
 - Associated with an improved outcome (CIR and OS) in pre-transplant MRD-positive pts

Strong and reliable GvL-effect as important approach to optimize posttransplant outcome!

Universitätsmedizin Essen Universitätsklinikum

Strategies for MRD-Conversion during Course of Treatment

Strategien zur MRD-Konversion im Behandlungsverlauf

Post-Transplant Maintenance aims at...

... Targeting LSC/Progenitor Population directly

...Manipulating the kinetics of disease relapse after allo-SCT

...,Buying time" for GvL-effect

...Postponing the requirement for DLI until toxicity is reduced

Sorafenib as Maintenance for FLT3-ITD mut AML, SORMAIN

Overall Survival

n=83

Relapse-Free Survival MRD-pos post allo-SCT n=19

Universitätsmedizin Essen Universitätsklinikum

Relapse-Free Survival

n=83

Gilteritinib as Maintenance for FLT3-ITD mut AML, MORPHO

Gilteritinib as Maintenance for FLT3-ITD mut AML, MORPHO

MRD-positive peri-HCT Relapse-Free Survival

MRD-negative peri-HCT Relapse-Free Survival

Gilteritinib seems to augment the effect of HCT: in 71 MRD+ pts post allo-SCT, MRD was eradicated in 69% of pts on Gilteritinib vs. 44% in pts on PBO

CC-486 as Maintenance

Phase I/II, n=30

87% AML, 13% MDS 4 schedules per 28 days for 12 cycles

70% int cytogenetic risk (AML) 75% int-2/high risk IPSS (MDS)

Disease status @allo-SCT:

- 80% CR1
- 10% CR2
- 10% no CR

Time allo-SCT – CC-486 start: 82 days Median no. of cycles: 9

• 43% pf pts completed all cycles

Median FU 19 months 1-yr OS 85%

AMADEUS Trial (NCT04173533)

Oral-AZA vs. PBO

Low Dose Decitabine/Ven Maintenance

Grade II/III hematologic AE in 50%/20% of pts

2yr RFS: 84%

Clinical outcome of maintenance therapy after transplantation for 20 enrolled patients

2yr NRM: 6%

Azacitidine s.c./Ven Maintenance, VIALE-T (NCT04161885)

Part 1: DOSE CONFIRMATION

Part 2: RANDOMIZATION

Key Eligibility:

- Patients with AML \geq 12 yrs old
- BM blasts <10% before and <5% after allo-SCT
- ANC ≥ 1000 mcL
- Platelet count
 <u>></u> 50000 mcL

N = ca. 400

Endpoints:

- Primary:
 - Part 1: DLTs
 - Part 2: RFS
- Secondary:
 - Part 2: OS, GFRS, GvHD Rate

Maintenance for IDH1 mut AML

Ivosidenib, Phase I, n=18

44% had received allo-SCT for R/R 33% with prior exposure to IDH-inhibitor 75% int, 25% adv cytogenetic risk 60% RIC, 40% MAC

- MRD+ n=2 \rightarrow 1 relapse ٠
- MRD- n=9 \rightarrow 2 relapses ٠

Maintenance for IDH2 mut AML

Enasidenib, Phase I, n=19

20% had received allo-SCT for R/R 50% with prior exposure to IDH-inhibitor 80% int, 20% adv cytogenetic risk 80% RIC, 20% MAC

Post-Tx MRD available 14/19

- MRD+ n=6 \rightarrow 1 relapse
- MRD- n=8 \rightarrow 1 relapse

IDH2-Post-Allo Trial

Strategies for MRD-Conversion during Course of Treatment

Pre-emptive Therapie with HMA – RELAZA2

Platzbecker et al., Lancet 2018; Liberatore et al., Therapeutic advances in hematology 2022

18 patients alive and in ongoing complete remission at

data cutoff date

Pre-emptive Therapie with HMA & DLI

Type of relapse:

- Molecular 1 point
- Hematologic 2 points

Time to relapse:

- > 6 months 0 points
- < 6 months 1 point

n=71 44% molecular relapse

Risk Score/Group	Response Rate (CR) after Azacitidine	2-y OS Rate after Azacitidine [±SEM]
1 (n = 28)	71%	$64\% \pm 11\%$
2 (n = 64)	39%	$38\% \pm 8\%$
3 (n = 59)	29%	27% ± 7%
	p = 0.0007	p = 0.0012

© Universitätsmedizin Essen

Rautenberg et al. Cancers 2020; Liberatore et al. Therapeutic advances in hematology 2022

Conclusion II

- MRD-Conversion achieved with allo-SCT in up to 79% of Patients!
- Optimal Conditioning Intensity remains to be elucidated, but a MAC can be offered whenever clinical feasible especially in MRD-pos pts and also Mel-based RIC appears to be an option
- Maintenance Concepts can successfully target MRD peri-transplant, but "All-Comer" concepts are awaited eagerly
- For Post-transplant molecular relapse HMA & DLI remains standard of care

Thank you very much for your attention

Department for Hematology and Stem Cell Transplantation, University Hospital Essen

Prof. Dr. H.-C. Reinhardt Prof. Dr. Thomas Schroeder Dr. Annemarie Mohring Dr. Artur Schneider Dr. Jennifer Kaivers Dr. Nils Leimkühler Dr. Dr. Chris Sauer Dr. Dr. Emre Kocakavuk Dr. Tim Lohmann cand. med. C. Classen cand. med. J. Pyka cand. med. M. Savas

Klinik für Hämatologie und Stammzelltransplantation Universitätsmedizin Essen Westdeutsches Tumorzentrum

Team-Email: kmt-koordination@uk-essen.de

www.uni-essen-haematologie.de/stammzelltransplantation-kmt/

QUAZAR

How effective is chemotherapy in relapsed/refractory AML?

	CR/CRi/CRh in R/R AML	60-day mortality
FLAG-IDA venetoclax ¹	67%	3%
GO ²	30%	8%
Venetoclax + HMA/LDAC ³	33%	n.d.

1 DiNardo et al. J Clin Oncol. 2021;39:2768-2778