

Klinik für Hämatologie, Onkologie und Tumorimmunologie (CCM)

Charité – Universitätsmedizin Berlin

HCC Onkopedia Leitlinie

Prof. Sebastian Stintzing | 26. April 2024 | DGHO Berlin

Offenlegung Interessenskonflikte

Stintzing Sebastian

1. Anstellungsverhältnis oder Führungsposition

Charité – Universitaetsmedizin Berlin

2. Beratungs- bzw. Gutachtertätigkeit

AMGEN, AstraZeneca, Bayer, BMS, CV6, Daiichi-Sanyko, ESAI, Lilly, Merck KGaA, MSD, Pierre-Fabre, Roche, Sanofi, Servier, Taiho, Takeda

3. Besitz von Geschäftsanteilen, Aktien oder Fonds

keine

4. Patent, Urheberrecht, Verkaufslizenz

keine

5. Honorare

AMGEN, AstraZeneca, Bayer, BMS, Daiichi-Sanyko, ESAI, Leo-Pharma, Lilly, Merck KGaA, MSD, Pierre-Fabre, Roche, Sanofi, Servier, Taiho, Takeda

6. Finanzierung wissenschaftlicher Untersuchungen

Merck KGaA, Pierre-Fabre, Servier, Roche

7. Andere finanzielle Beziehungen

keine

8. Immaterielle Interessenkonflikte

keine

Inhalt

- 1. Grundlagen
- 2. Prävention
- 3. Klinisches Bild
- 4. Diagnose
- 5. Therapie
 - (1) Lokale Verfahren
 - (2) Systemische Therapie
- 6. Zukunft

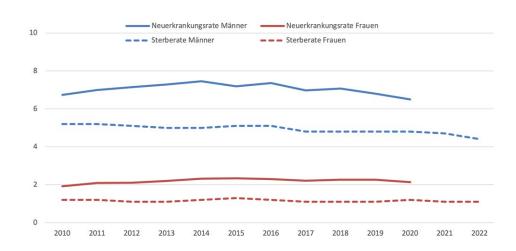
1

Onkopedia Leitlinie HCC Grundlagen

Grundlagen

Epidemiologie

• ca. 6.000 Neuerkrankungen pro Jahr/Dtschl.


→Inzidenz: 🕴 1:3 🖠

- ca. 4.300 Sterbefälle pro Jahr
- Erkrankungsalter (median)

→ **†** 75 Jahre; **†** 71 Jahre

• Medianes Überleben:

<60 Jahre: 13 Monate 60-74 Jahre: 12 Monate >75 Jahre: 8 Monate

Weltweit:

- Ca. 910.000 Neuerkrankungen pro Jahr
- · Ansteigende Inzidenz

\$ onkopedia

Grundlagen

Epidemiologie

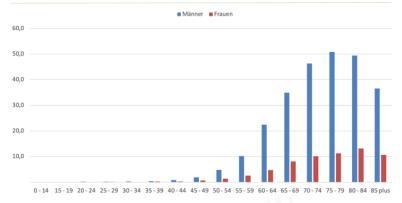


Abbildung 2: Inzidenzraten des HCC nach Alter in Jahren und Geschlecht (Deutschland 2018-2020, je 100.000 Personen)

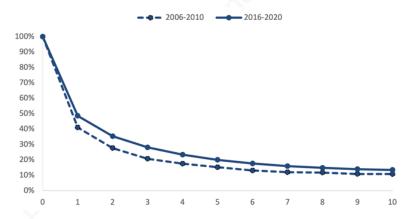
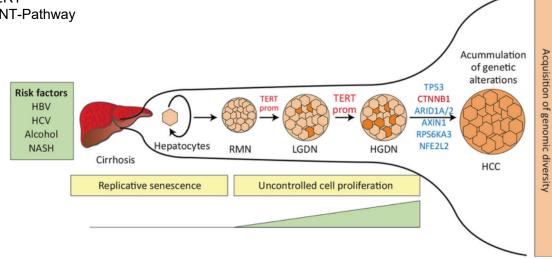


Abbildung 3: Relative Überlebensraten in Deutschland bis 10 Jahre nach Erstdiagnose eines HCC, nach Zeitperiode (Periodenanalyse, ausgewählte Register)

2

Onkopedia Leitlinie HCC Prävention



\$ onkopedia

Karzinogenese

Zentral ist:

- TP53
- **TERT**
- WNT-Pathway

Main signalling pathway altered in HCC

Telomere maintenance

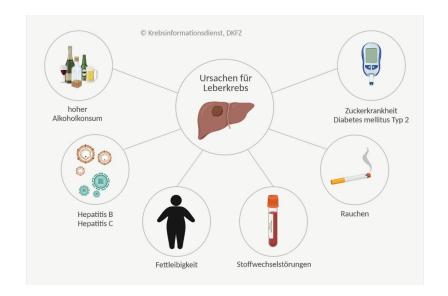
P53 and cell cycle gene

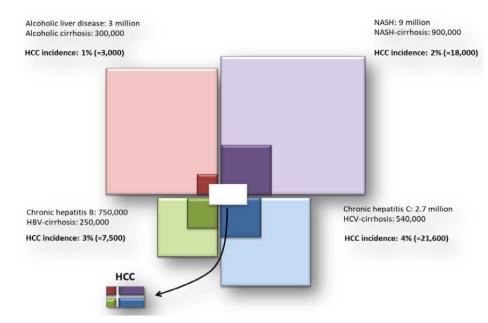
Oxidative stress pathway

Wnt/β-catenine pathway

Epigenetic modifyer gene

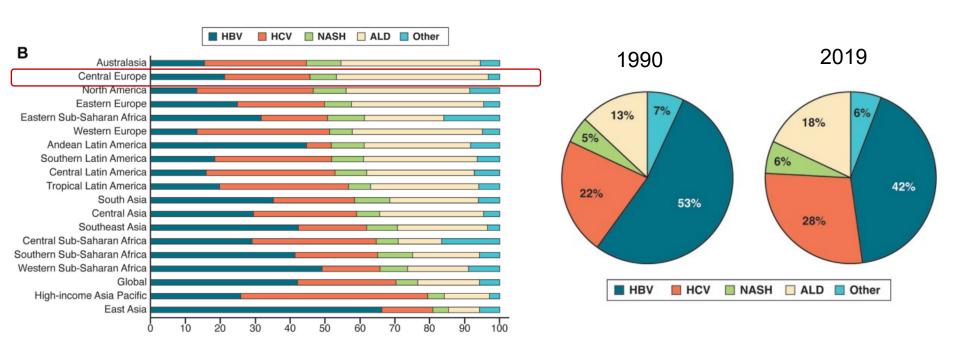
Map kinase and mTor pathway





Risikofaktoren

Figure 1. Relative contributions for HCC incidence from the most frequent causes of liver disease. HCC = hepatocellular carcinoma; NASH = non-alcoholic steato-hepatitis; HBV = hepatitis B virus; HCV = hepatitis C virus.



\$ onkopedia

Globale Unterschiede

\$ onkopedia

Risikofaktoren

· Genetische Prädispositionen

→ Alkoholbedingte Leberzirrhose:

<u>Erhöhtes Risiko</u>: TM6SF2-Variante rs58542926, Phospholipase-PNPLA3-Variante rs738409

Protektiv: TERT: rs2242652(A)

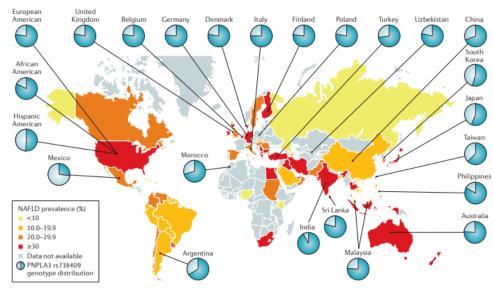


Figure 1 | Worldwide estimated prevalence of NAFLD and distribution of PNPLA3 genotypes. PNPLA3 is presented as minor allele frequency (light blue section of the pie chart).

Younossi Z et al Nat Rev Gastroenterology & Hepatology15, pages11-20 (2018)

\$ onkopedia

Risikofaktoren

• Leberzirrhose: jährliches Risiko ein HCC zu entwickeln: 2,5%

→ Zirrhose + Hepatitis C: 3-8%

→ Zirrhose + Hepatitis B: 2%

→Zirrhose bei MASLD/MASH: 0,004-7.6%

• HCC ohne vorherige Zirrhose:

→ Hepatitis B / Hepatitis C: 0,12-1,3%

	Risk factor									
	Hepatitis C virus	Hepatitis B virus*	Alcohol	Other						
Europe	60–70%	10–15%	20%	10%						
North America	50-60%	20%	20%	10%						
Asia and Africa†	20%	70%	10%	<10%‡						

^{*}Estimates from HbsAg carriers. Occult hepatitis B virus infection might involve additional patients. †Except Japan, for which hepatitis C virus 70%, hepatitis B virus 10–20%, alcohol 10%, other <10%. ‡Aflatoxin is main co-factor enhancing oncogenetic risk of patients with hepatitis B virus infection. Modified from reference 6.

Llovet LANCET • Vol 362 • December 6, 2003

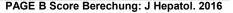
Vorbeugung und Früherkennung

- · Schutzimpfung gegen Hepatitis B
- Behandlung der Ursachen einer chronischen Lebererkrankung, insbesondere Alkoholkarenz, Gewichtskorrektur bei Adipositas (Ramai, Aliment Pharmacol Ther 2021)
- Behandlung von Hyperlipidämien mit Statinen, insbesondere bei Vorliegen einer Phospholipase-PNPLA3-Variante rs738409 (Singh, Gastroenterology 2013; Simon, AIM 2019; Vell, JAMA-NO 2023)
- Metformin-Therapie bei nicht-insulinpflichtigem Diabetes mellitus (Chen, Gut 2013; Singal, NRCO 2023)
- Niedrig dosierte ASS zusätzlich zu Metformin (Simon, NEJM 2020; Singal, NRCO 2023)
- Antivirale Behandlung bei chronischer HBV-/HCV-Infektion mit und ohne HCC, bei Hepatitis C vorzugsweise mit Tenofovir (Ogawa, JAMA-IM 2023)

Prävention –nicht gesichert: retrospektive Daten

Vorbeugung und Früherkennung

- Zufuhr von ≥ 3 Tassen koffeinhaltigen Kaffees pro Tag: relative Risikoreduktion 41-50% (Kennedy, BMJ Open 2017; Bhurwal, J Gastrointestin Liver Dis 2020)
- Bei entkoffeiniertem Kaffee nicht belegt (Bhurwal)
- Für grünen Tee ebenfalls nicht belegt (Filippini T, Cochrane 2020)


Früherkennung

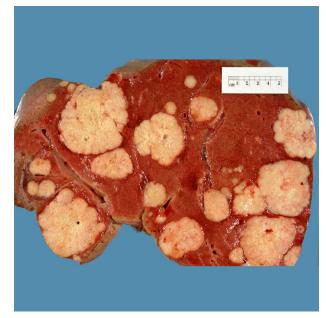
Vorbeugung und Früherkennung

- Screeninguntersuchung
 - → Patienten mit Leberzirrhose:
 - → Alle 6 Monate: Sonographie Abdomen plus AFP: Verbessert Überleben und Operabilität
 - → AFP Bestimmung: AFP Werte ≥ 20 ng/mL: Sensitivität 49-71% Spezifität 49-86% für ein HCC <5cm
 - → AFP Bestimmung verbessert vermutlich Überleben (retrospektive koreanische Daten)
 - → Patienten ohne Leberzirrhose
 - → Hämochromatose: Screening ab Fibrosegrad 3 (METAVIR F3)
 - → Heaptitis B: analog **PAGE B Score**: <10 Punkte: neg. Vorhersage von 99% ein HCC in den nächsten 5 Jahren

Altersgruppe	(Punkte)	Geschlecht	(Punkte)	Thrombozytenwert (Punkte)		
16-29	0 weiblich 0		0	>200/nl	0	
30-39 2		männlich	6	100-199/nl	6	
40-49 4				<100/nl	9	
50-59	6					
60-69 8						
>70 10						

3

Klinisches Bild

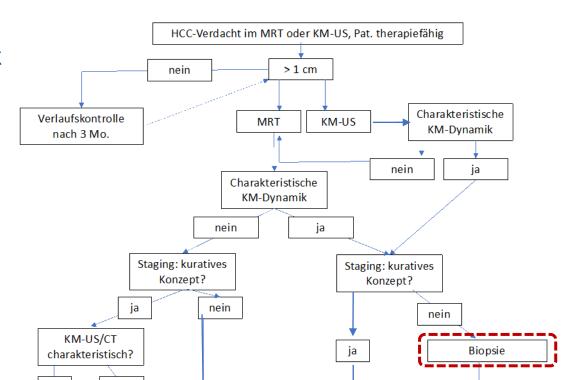

Klinisches Bild

Keine Symptome im kurativen Frühstadium!

Spätstadium

- Druckschmerz im Oberbauch
- Tastbare Schwellung unter dem rechten Rippenbogen
- Appetitlosigkeit, Übelkeit oder erhöhte Körpertemperatur ungeklärter Ursache
- · Schwäche, Leistungsminderung
- Ungewollte Gewichtsabnahme
- Zunehmender Ikterus und Juckreiz
- Zunahme des Bauchumfangs durch Aszites (bereits fortgeschrittene Zirrhose)

Quelle: doccheck flexikon


4

Diagnostik

Diagnostik

nein

Biopsie

HCC - Palliative

Intervention

ja

Primär kurative

Intervention

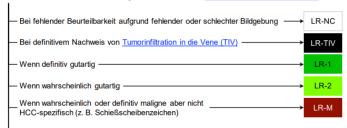
Primär kurative

Intervention

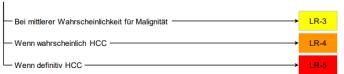
HCC - Palliative

Intervention

HCC-Kriterien in der bildgebenden Diagnostik


MRT Kriterien: LI-RADS (Liver Imaging Reporting and Data System)

- Tumorgröße
- Kontrastmitteldynamik (arterielle Phase und Auswaschphase)
- Kapselenhancement
- Wachstumsdynamik (≥ 50% Zunahme in ≤ 6 Monaten, ≥ 100% Zunahme in > 6 Monaten, neue Raumforderung ≥ 10 mm)


→ CAVE: 9% falsch negative Beurteilungen!

Unbehandelte Observation ohne histologischen Nachweis bei Patienten mit hohem HCC-Risike

Andernfalls wenden Sie die CT/MRT-Diagnosetabelle unten an

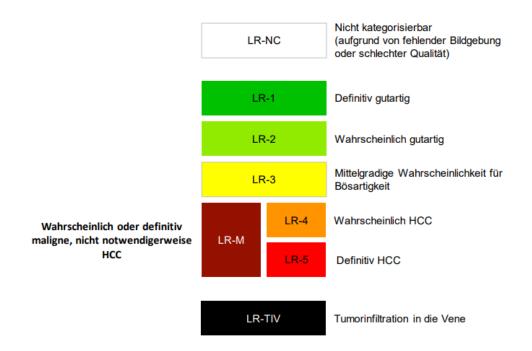
CT/MRT Diagnosetabelle

Hyperenhancement in der arterielle (APHE)	Kein	APHE	APHE	(kein Rim-Z	(eichen)	
Größe der Observation (mm)	< 20	≥ 20	< 10	10-19	≥ 20	
Beachte Hauptmerkmale:	Keines	LR-3	LR-3	LR-3	LR-3	LR-4
Anreichernde "Kapsel" "Washout" (nicht peripher) Schwellenwachstum	Eines	LR-3	LR-4	LR-4	LR-4 LR-5	LR-5
	≥ zwei	LR-4	LR-4	LR-4	LR-5	LR-5

Observationen in dieser Kategorie werden nach zusätzlichem Hauptmerkmal

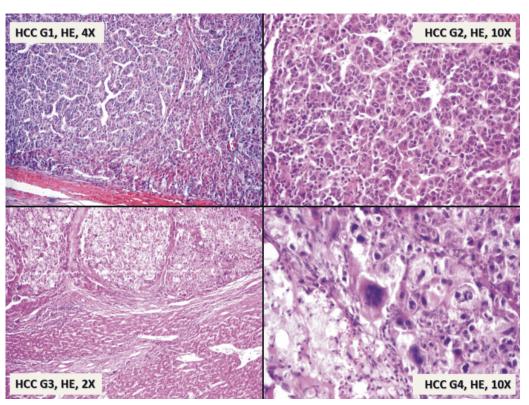
- LR-4 bei anreichernder Kapsel
- LR-5 bei nicht-peripherem Washout oder Schwellenwachstum

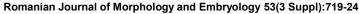
https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/Translations/LI-RADS-2018-CT-MRI-Core-German.pdf?la=en



HCC-Kriterien in der bildgebenden Diagnostik

https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/Translations/LI-RADS-2018-CT-MRI-Core-German.pdf?la=en





Histologie

- Typisierung nach aktueller WHO Klassifikation
- Sonderformen:
 - → fibrolamelläres HCC
 - → mischdifferenzierte Tumoren
- Im Zweifelsfall
 - → Glypican, HSP70 und Glutaminsythetase: wenn ≥ 2 Marker positiv: Spezifität für HCC 100% (Di Tommaso 2009/ Tremosini2012)

\$ onkopedia

Diagnostik

Staging

Barcelona Stadien des HCC

Stage	Definition
Very early stage (0)	 Single ≤2 cm Preserved liver function,^a PS 0
Early stage (A)	 Single, or ≤3 nodules each ≤3 cm Preserved liver function,^a PS 0
Intermediate stage (B)	Multinodular Preserved liver function, ^a PS 0
Advanced stage (C)	Portal invasion and/or extrahepatic spread Preserved liver function, PS 1-2
Terminal stage (D)	Any tumor burden End stage liver function, PS 3-4

PS = Pugh-Score

CHILD-Pugh Score

Chamical and Biachamical Barranatana	Scores (Points) for Increasing Abnormality					
Chemical and Biochemical Parameters	1	2	3			
Encephalopathy (grade) ¹	None	1–2	3–4			
Ascites	Absent	Slight	Moderate			
Albumin (g/dL)	>3.5	2.8–3.5	<2.8			
Prothrombin time ²						
Seconds over control INR	<4 <1.7	4–6 1.7–2.3	>6 >2.3			
Bilirubin (mg/dL) • For primary biliary cirrhosis	<2 <4	2–3 4–10	>3 >10			

Class A = 5-6 points; Class B = 7-9 points; Class C = 10-15 points.

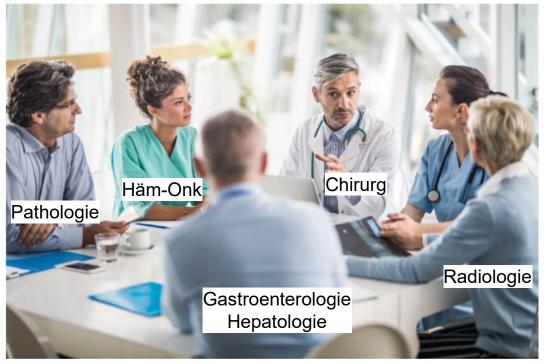
Class A: Good operative risk Class B: Moderate operative risk Class C: Poor operative risk

Reig, J Hepatol 2022

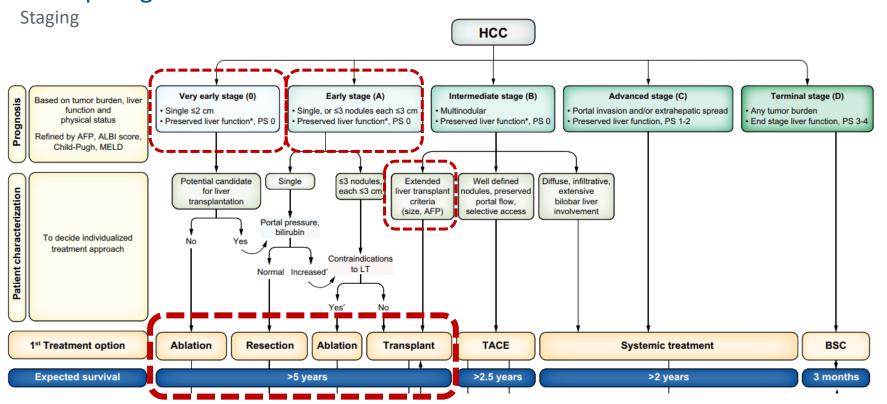
Pugh, Br J Surg 1973

5

Therapie



Therapie des HCC


Vorstellung im Tumorboard assoziiert zu einem Lebertransplantationszentrum!

Therapiealgorithmus

REIG et al Journal of Hepatology 2022 vol. 76 j 681-693

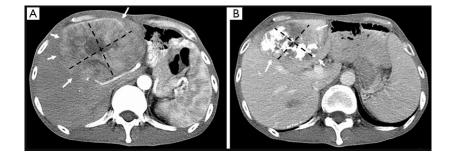
Ablation: Herde bis 3cm Durchmesser

Table 2. Cure propo	rtions and years of life lost (YLLs) resultin	g from flexible	parametric cure model.		
Variables	Proportion cured (95% C.I.)	P	Median age (IQR)	Median YLL (IQR)	P
Age					
<60 years	19.0% (15.7, 22.7)	Ref.	52 (47, 56)	23.7 (21.1, 27.7)	Ref.
60-70 years	17.4% (13.9, 21.3)	0.470	65 (62, 68)	15.4 (13.1, 17.2)	0.001
71-80 years	17.2% (12.6, 22.5)	0.510	74 (72, 77)	9.4 (7.8, 10.6)	0.001
>80 years	23.4% (10.6, 39.3)	0.555	83 (81, 85)	4.4 (3.5, 4.9)	0.001
Gender					
Male	16.9% (14.2, 19.8)	Ref.	61 (53, 69)	17.4 (12.1, 22.7)	Ref.
Female	23.0% (18.2, 28.1)	0.014	65 (56, 73)	16.6 (11.3, 22.7)	0.144
Year of diagnosis					
2004-2008	14.7% (10.2, 20.2)	Ref.	62 (53, 69)	18.7 (13.6, 25.3)	Ref.
2009-2013	17.5% (14.3, 21.1)	0.346	61 (52, 69)	18.0 (12.5, 23.9)	0.206
2014-2018	20.5% (16.8, 24.4)	0.056	62 (54, 70)	16.1 (11.4, 21.7)	0.001
Hepatitis B					
Negative	20.1% (16.8, 23.6)	Ref.	67 (59, 73)	14.7 (10.2, 19.9)	Ref.
Positive	16.1% (13.0, 19.5)	0.043	57 (50, 65)	20.0 (15.0, 25.1)	0.001
Hepatitis C					
Negative	19.3% (16.4, 22.3)	Ref.	61 (52, 69)	17.2 (12.3, 23.5)	Ref.
Positive	14.4% (10.6, 18.8)	0.033	64 (57, 74)	16.6 (10.2, 22.4)	0.001
Alcohol					
Negative	18.6% (15.9, 21.6)	Ref.	61 (53, 70)	17.6 (12.0, 23.4)	Ref.
Positive	15.8% (10.9, 21.6)	0.323	65 (58, 69)	15.5 (12.1, 20.4)	0.002

ALBI grade					
1	23.8% (19.8, 28.0)	Ref.	60 (51, 69)	16.5 (11.7, 22.6)	Ref.
2	14.8% (12.0, 18.0)	0.001	63 (56, 71)	17.0 (12.2, 22.9)	0.573
3	12.0% (6.8, 18.9)	0.003	61 (53, 69)	20.0 (13.5, 25.4)	0.002
Ablation technique					
RFA	18.5% (15.8, 21.5)	Ref.	61 (53, 69)	17.6 (12.2, 23.4)	Ref.
MWA	16.7% (11.7, 22.3)	0.498	67 (59, 71)	15.7 (11.5, 20.2)	0.001
Largest tumour size					
<2 cm	26.9% (21.7, 32.3)	Ref.	62 (53, 70)	15.1 (10.6, 20.9)	Ref.
2-3 cm	19.2% (15.8, 23.0)	0.007	61 (54, 70)	17.4 (12.0, 22.5)	0.006
3.1–5 cm	12.7% (9.5, 16.4)	0.001	63 (55, 70)	17.5 (12.5, 23.8)	0.001
>5 cm	4.6% (1.9, 9.4)	0.001	56 (48, 67)	23.7 (16.2, 31.2)	0.001
Tumour number					
Single	20.8% (17.8, 24.0)	Ref.	62 (53, 70)	16.7 (11.8, 22.4)	Ref.
2 or 3 nodules	11.5% (8.1, 15.5)	0.001	62 (55, 70)	18.3 (12.2, 24.2)	0.037
4+ nodules	2.5% (0.7, 6.3)	0.001	63 (57, 69)	19.5 (14.6, 24.6)	0.012
Very-early stage					
Within	30.9% (24.9, 37.1)	Ref.	61 (53, 70)	14.5 (9.9, 20.4)	Ref.
Beyond	15.4% (12.8, 18.2)	0.001	62 (54, 70)	17.7 (12.3, 23.7)	0.001
Milan criteria					
Within	20.7% (17.7, 23.8)	Ref.	62 (54, 70)	16.5 (11.5, 22.2)	Ref.
Beyond	5.2% (3.0, 8.1)	0.001	60 (52, 68)	20.8 (14.5, 26.9)	0.001

Variables affecting cure proportion entered into the multivariable flexible parametric model. Variables affecting YLLs were used through the generalised linear model to produce approximated YLLs values. Very-early stage and Milan criteria were not entered in the models because their components (size and number) were already retained.

Cucchetti British Journal of Cancer (2023) 128:1665 - 1671



TACE

- Prinzipiell palliative Therapieoption
- Bridging zur LTX
- · kann mehrfach sequentiell durchgeführt werden
- Alternativ zur TACE kann bei Pat, mit erhaltener Leberfunktion im intermediären HCC-Stadium eine transarterielle Radioembolisation mit 90-Yttrium-Mikrosphären (TARE oder SIRT) → Nur Metaanalysen!

SIRT / TARE vs. TACE

Table I Patient characteristics in the three randomized clinical trials

Trial		SIRTACE ⁶		Mainz ⁷		PREMIERE®		
Group		TARE	TACE	TARE	TACE	TARE	TACE	
		n=13	n=15	n=12	n=12	n=24	n=21	
Age, years		65.8	66.7	71.8	70.5	62	64	
Males, %		84.6	86.7	83.4	75	71	76	
ECOG, n (%)	0	10 (76.9)	12 (80.0)	12 (100)	12 (100)	24 (100)	21 (100)	
	1	3 (23.1)	3 (20.0)	0 (0)	0 (0)	0 (0)	0 (0)	
Child-Pugh class, n (%)	Α	12 (92.3)	13 (86.6)	10 (83.3)	9 (75)	18 (75)	17 (81)	
	В	1 (7.7)	2 (13.4)	2 (16.7)	3 (25)	6 (25)	4 (19)	
BCLC stage, n (%)	Α	5 (38.4)	4 (26.6)	13 (86.6)	10 (83.3)	18 (75)	17 (81)	
	В	5 (38.4)	8 (53.3)	2 (13.4)	2 (16.7)	6 (25)	4 (19)	
	C	3 (23.0)	3 (20.0)	0 (0)	0 (0)	0 (0)	0 (0)	
Bilobar disease		ND	ND	8 (67)	7 (58)	7 (29)	7 (33)	
Tumor size, mm	Т	ND	ND	61.3 (36.4)2	60.8 (37.6) ^a	32 (27–37)	30 (23–36)	
Tumor volume, mL		137.7 (237.6) ^a	235.6 (349.4) ^a	ND	ND	ND	ND	
Total bilirubin (mg/dL)	Т	1.00 (0.60) ^a	1.08 (0.45)2	1.17 (0.38-2.10)	1.26 (0.59-2.04)	1.3 (1.2-1.7)	0.9 (0.8-1.5)	
Albumin (g/L)		36.3 (3.9) ^a	42.0 (8.0) ^a	34.1 (28-43)	31.9 (24–39)	31 (27–33)	32 (29–34)	
AFP (ng/mL)	T	636.0 (2,171.8) ^a	2,624.7 (9,525.3) ^a	14.0 (6.2–32,346)	7.8 (2.7–1,847)	<200: 88%	<200: 90%	
						>200: 10%	>200: 12%	

Notes: 'Mean (SD). Values are expressed as median (IQR) unless otherwise indicated. Data from Salem R et al; Pitton MB; Kolligs FT.**

Abbreviations: AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; ECOG, Eastern Cooperative Oncology Group; ND, not determined; TACE, transarterial adherencembolization; TARE, transarterial adherencembolization; TARE, transarterial radional control of the composition of the transarterial radional control of the composition of the transactive indicated.

1-Jahres-Überleben

Study or subgroup	TARE Events	Total	TACE Events	Total	Weight (%)	Odds ratio M-H, random, 95% CI	Odds ratio M-H, random, 95% CI
Kolligs 2015	7	13	5	15	30.4	2.33 (0.51, 10.78)	
Pitton 2015	5	12	5	12	27.0	1.00 (0.20, 5.07)	
Riad Salem 2016	7	24	6	21	42.6	1.03 (0.28, 3.75)	-
Total (95% CI)		49		48	100	1.31 (0.56, 3.04)	•
Total events	19		16				Γ
Heterogeneity: τ2=0.0	0; χ ² =0.79, dt	f=2 (P=0.67	7); /2=0%			ı	
Test for overall effect:	Z=0.63 (P=0	.53)				0.0	01 0.1 1 10 100
							Favors TARE Favors TACE

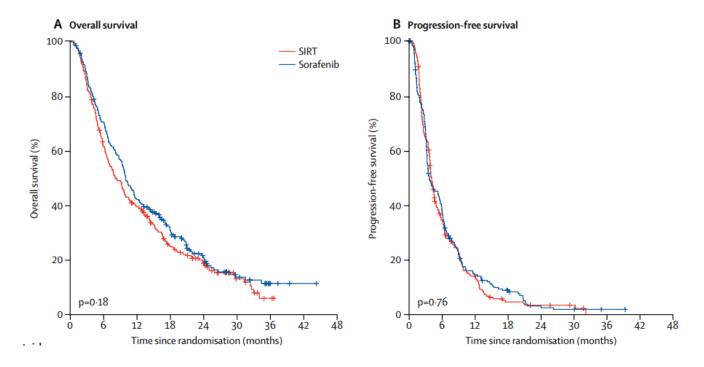
DFS

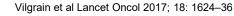
A Study or subgroup	TARE Events	Total	TACE Events	Total	Weight (%)	Odds ratio M-H, random, 95% CI			ratio M–l om, 95% (
Kolligs 2015	2	13	3	15	56.2	0.73 (0.10, 5.20)					
Pitton 2015	0	12	3	12	23.1	0.11 (0.00, 2.36)	\leftarrow	-	-		
Riad salem 201	6 1	23	0	19	20.7	2.60 (0.10, 67.56)		_	+•		_
Total (95% CI)		48		46	100	0.61 (0.14, 2.70)					
Total events	3		6						_		
Heterogeneity: 12	=0.02; χ^2 =2.02, (df=2 (P=0.3	36); I ² =1%								
Test for overall eff	fect: Z=0.65 (P=	0.51)					0.01	0.1	1	10	100
\cap R								vors TARE	Favo	ors TA	

DCR

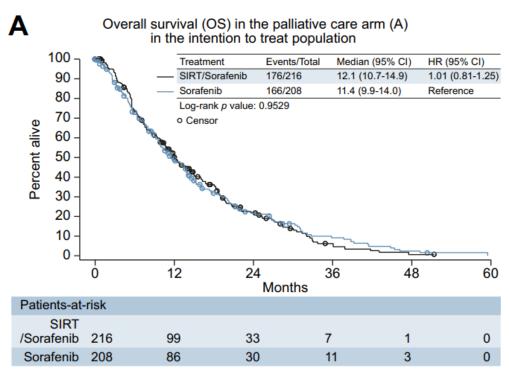
В	Study or subgroup	TARE Events	Total	TACE Events	Total	Weight (%)	Odds ratio M-H, random, 95% CI	Odds ratio M-H, random, 95% CI
	Kolligs 2015	10	13	11	15	52.7	1.21 (0.22, 6.80)	
	Pitton 2015	12	12	12	12		Not estimable	
	Riad salem 2016	21	23	15	19	47.3	2.80 (0.45, 17.32)	
	Total (95% CI)		48		46	100	1.80 (0.51, 6.30)	-
	Total events	43		38				
	Heterogeneity: r2=0.0	$00; \chi^2 = 0.43, c$	ff=1 (P=0.5	51); /2=0%				
	Test for overall effect:	Z=0.92 (P=	0.36)				0	.01 0.1 1 10 100
								Favors TARE Favors TACE

Cucchetti British Journal of Cancer (2023) 128:1665 - 1671

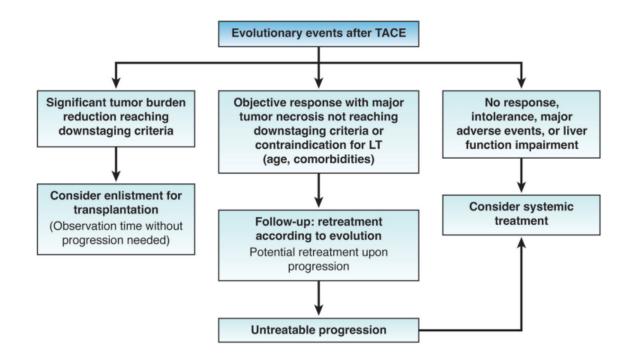




SIRT in der palliativen Situation Phase-3 SARAH Studie



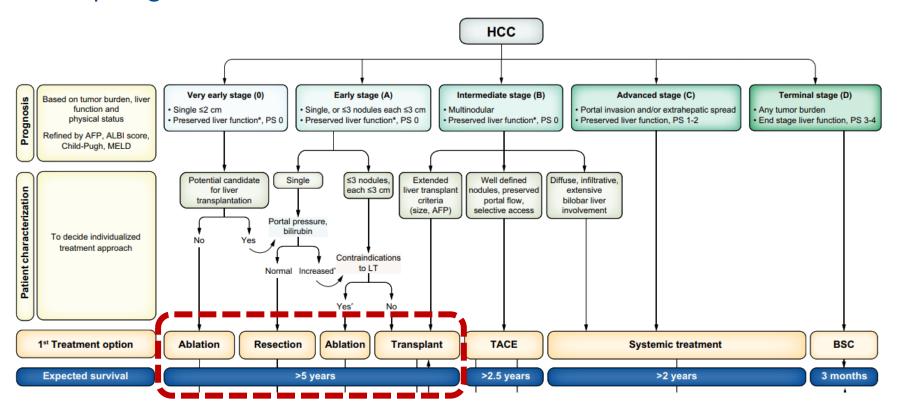
SIRT in der palliativen Situation Phase-3 SORAMIC Studie



Was tun nach TACE?

Lokales HCC

Singal et al Clinical Gastroenterology and Hepatology 2023;21:2135–2149

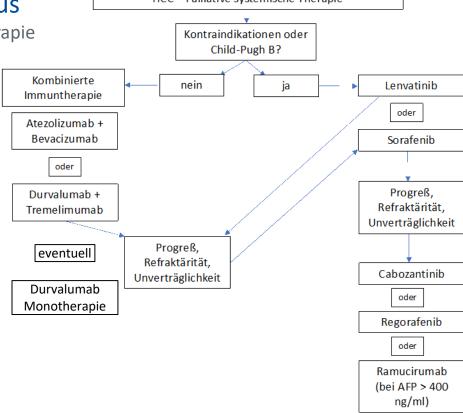


Therapiealgorithmus

REIG et al Journal of Hepatology 2022 vol. 76 j 681-693

5a

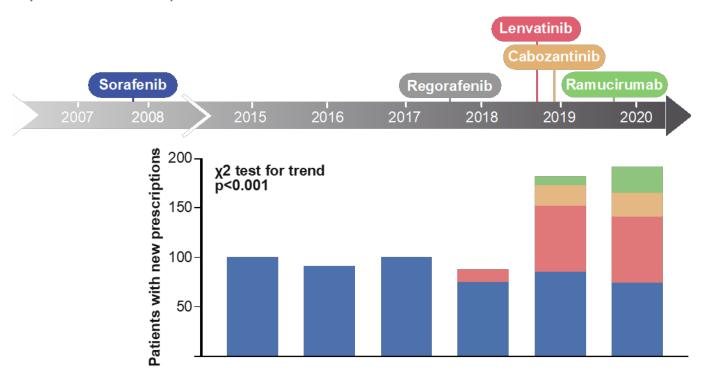
Erstlinienlinientherapie



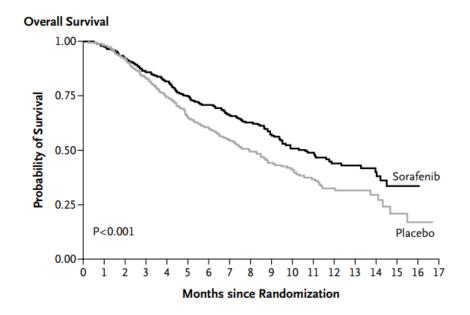
Therapiealgorithmus

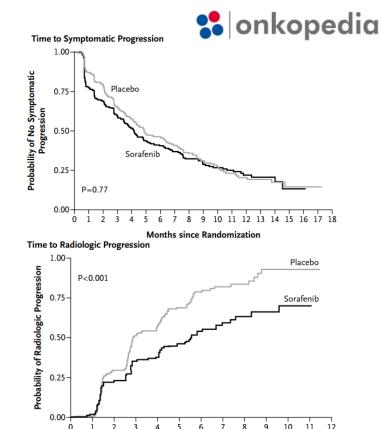
HCC – Palliative systemische Therapie

Palliative systemische Therapie



Palliative systemische Therapie





Palliative systemische Therapie - Erstlinie

Sorafenib SHARP Studie

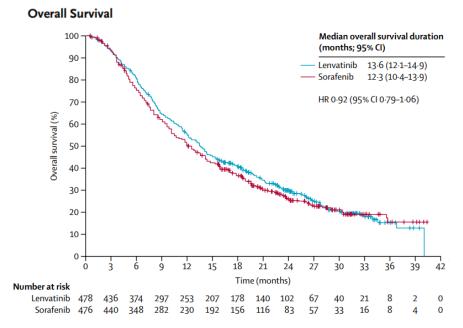
medianes OS: 10,7mo vs. 7.9mo

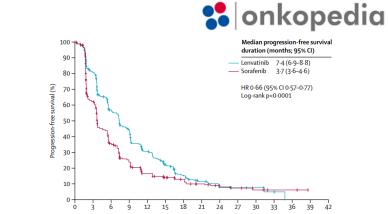
Months since Randomization

Andere TKI's: Studien 2007-2017

Table 1. Phase III trials in advanced hepatocellular carcinoma conducted in the last decade.

	Trial	Arms	N	ORR	TTP		PFS		OS	
					Median	HR	Median	HR	Median	HR
First-line	SHARP ⁷	Sorafenib	299	2.3	5.5	0.58 (0.45-0.74)		NR	10.7	0.69 (0.55-0.87)
		Placebo	303	0.7	2.8				7.9	
	Asian-Pacific ⁸	Sorafenib	150	3.3	2.8	0.57 (0.42-0.79)		NR	6.5	0.68 (0.50-0.93)
		Placebo	76	1.3	1.4				4.2	
	SUN1170 ⁹	Sunitinib	530	6.6	4.1	1.13 (0.98-1.31)	3.6	1.13 (0.99-1.30)	7.9	1.30 (1.13-1.50)
		Sorafenib	544	6.1	3.8		3		10.2	
	BRISK-FL*10	Brivanib	577	12.0	4.2	1.01 (0.88-1.16)		NR	9.5	1.07 (0.94-1.23)
		Sorafenib	578	8.8	4.1				9.9	
	LIGHT ¹¹	Linifanib	514	10.1	5.4	0.76 (0.64-0.90)	4.2	0.81 (0.70-0.95)	9.1	1.05 (0.90-1.22)
		Sorafenib	521	6.1	4		2.9		9.8	
	SEARCH ¹²	Sorafenib + erlotinib	362	6.6	3.2	1.14 (0.94-1.37)	NR	1.11 (0.94-1.31)	9.5	0.93 (0.78-1.11)
		Sorafenib	476	9.2	3.7		3.7		12.3	
	SARAH ¹⁴	Y90	237	15.2		NR	4.1	1.03 (0.85-1.25)	8	1.15 (0.94-1.41)
		Sorafenib	222	10.4			3.7		9.9	
	SIRveNIB ¹⁵	Y90	182	16.5	6.1	0.88 (0.7-1.1)	5.8	0.89 (0.70-1.10)	8.8	1.10 (0.90-1.40)
		Sorafenib	178	1.7	5.4		5.1		10	
	EACH ¹⁶	Folfox4	184	8.2		NR	2.93	0.62 (0.49-0.79)	6.4	0.80 (0.63-1.02)
		Doxorubicin	187	2.7			1.77		4.97	
	CALGB80802 ¹⁷	Sorafenib + doxorubicin	173	NR		NR	3.6	0.90 (0.72-1.20)	9.3	1.06 (0.80-1.40)
		Sorafenib	173	NR			3.2		10.5	
	SILIUS [*] 18	Sorafenib + HAIC	103	36.3	5.3	0.65 (0.48-0.87)	4.8	0.75 (0.57-1.00)	11.8	1.01 (0.74-1.37)
		Sorafenib	103	17.5	3.5		3.5		11.5	





* onkopedia

Palliative systemische Therapie - Erstlinie

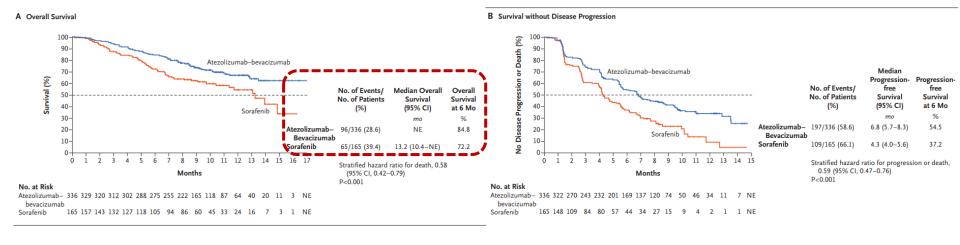
Levantinib – REFLECT Studie

44 28

33 22 14

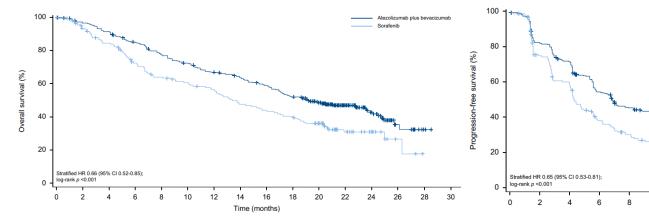
	Lenvatinib (n=478)	Sorafenib (n=476)	Effect size (95% CI)	p value
Investigator review according to mRECIST				
Overall survival (months)	13.6 (12.1–14.9)	12-3 (10-4-13-9)	HR 0-92 (0-79-1-06)	
Progression-free survival (months)	7-4 (6-9-8-8)	3.7 (3.6-4.6)	HR 0-66 (0-57-0-77)	<0.0001
Time to progression (months)	8-9 (7-4-9-2)	3.7 (3.6-5.4)	HR 0-63 (0-53-0-73)	<0.0001
Objective response (%, 95% CI)	115 (24·1%, 20·2-27·9)	44 (9-2%, 6-6-11-8)	OR 3·13 (2·15-4·56)	<0.0001
Complete response	6 (1%)	2 (<1%)		
Partial response	109 (23%)	42 (9%)		
Stable disease	246 (51%)	244 (51%)		
Durable stable disease lasting ≥23 weeks	167 (35%)	139 (29%)		
Progressive disease	71 (15%)	147 (31%)		
Unknown or not evaluable	46 (10%)	41 (9%)		
Disease control rate (%, 95% CI)	361 (75.5%, 71.7-79.4)	288 (60.5%, 56.1-64.9)		

Number at risk


Lenvatinib 478 345 223 172 106 69

Sorafenib 476 262 140 94 56 41

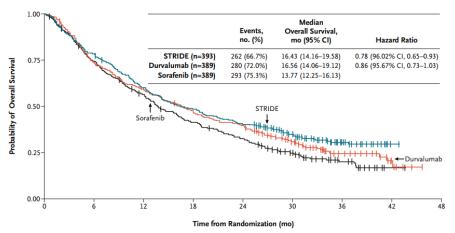
Atezolizumab + Bevacizumab - IMbrave150

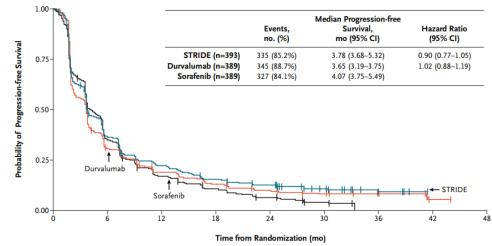


Atezolizumab + Bevacizumab - IMbrave150

medianes OS: 19,2mo vs. 13,4mo

medianes PFS: 6,9mo vs. 4,3mo

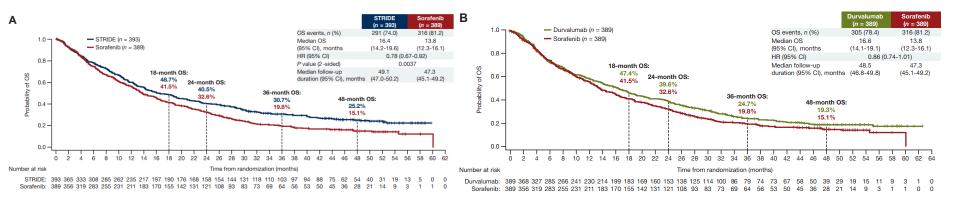




\$ onkopedia

Palliative systemische Therapie - Erstlinie

Durvalumab + Tremelimumab - HIMALAYA Studie

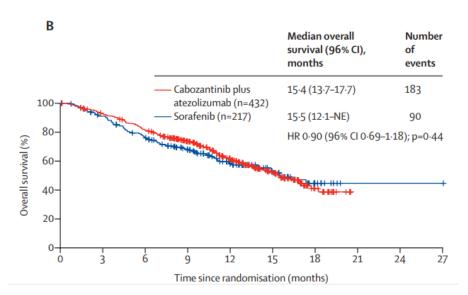


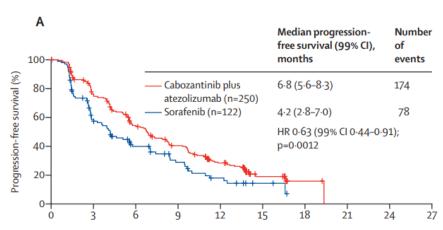
Palliative systemische Therapie - Erstlinie

% onkopedia

Durvalumab + Tremelimumab - HIMALAYA Studie

medianes OS: 16,4mo vs. 13.8mo medianes PFS: 16,6mo vs. 13,8mo

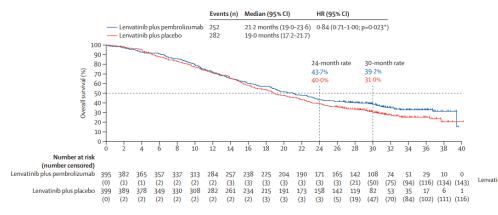


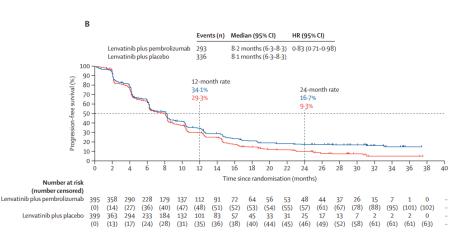


\$ onkopedia

Cabozantinib + Atezolizumab - COSMIC-312 Studie

→ Negative Studie!





Palliative systemische Therapie - Erstlinie

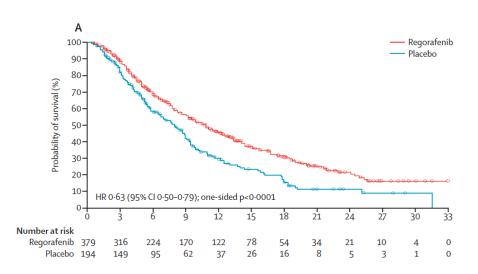
\$ onkopedia

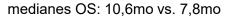
Levantinib + Pembrolizumab – LEAP-002 Studie

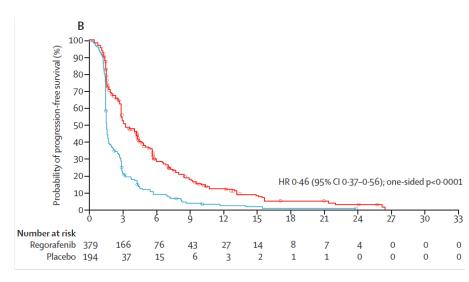
→ Negative Studie!

Zweitlinientherapie

b



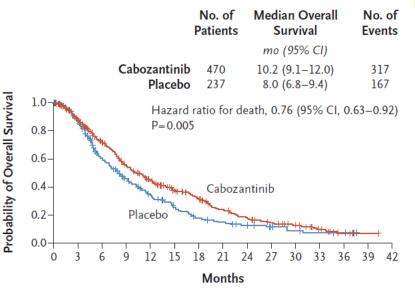

Palliative systemische Therapie – Zweitlinie

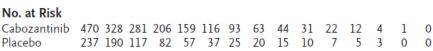

\$ onkopedia

Regorafenib

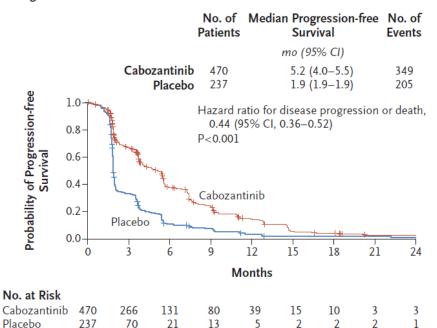
→ Zugelassen nach Sorafenib

medianes PFS: 3.1mo vs. 1.5mo


Palliative systemische Therapie – Zweitlinie



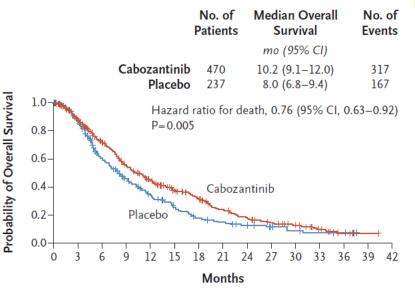
Cabozantinib

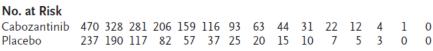

→ Zugelassen nach Sorafenib

A Overall Survival

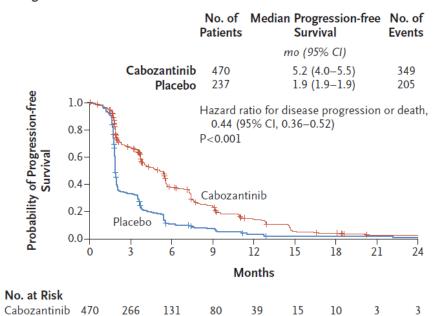
Progression-free Survival

Abou-Alfa et al N Engl J Med 2018;379:54-63.





Ramucirumab


→ Zugelassen nach Sorafenib

A Overall Survival

Progression-free Survival

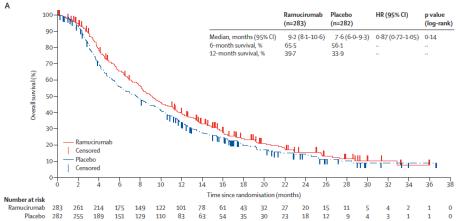
2 Abou-Alfa et al N Engl J Med 2018;379:54-63.

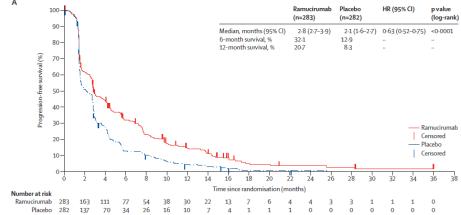
Placebo

70

237

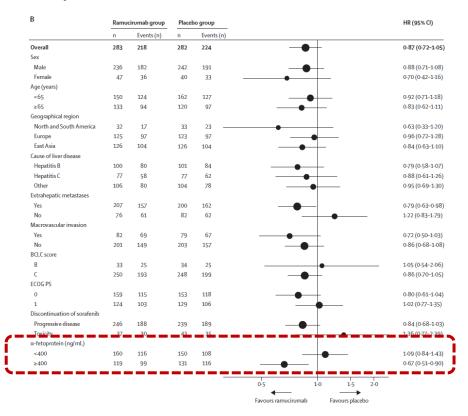
13


21


Palliative systemische Therapie – Zweitlinie

Ramucirumab REACH

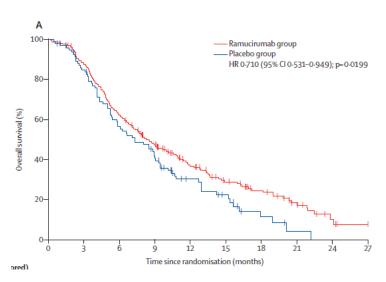
→ Zugelassen nach Sorafenib



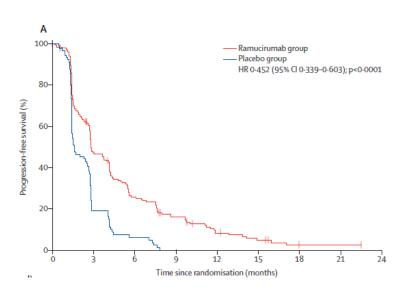
\$ onkopedia

Palliative systemische Therapie – Zweitlinie

Ramucirumab REACH



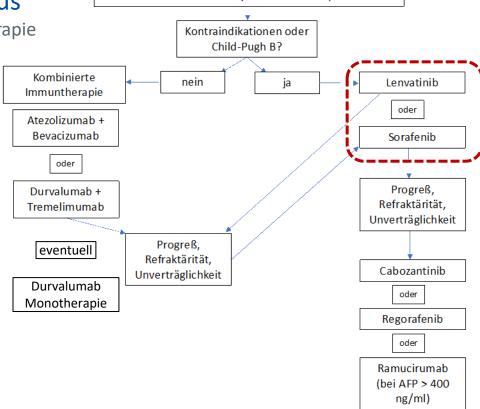
Palliative systemische Therapie – Zweitlinie


Ramucirumab REACH-2: AFP ≤400ng/mL

→ Zugelassen nach Sorafenib

medianes OS: 8.5mo vs. 7.3mo

medianes PFS: 2.8mo vs. 1.6mo



HCC - Palliative systemische Therapie

Palliative systemische Therapie

Levantinib oder Sorafenib?

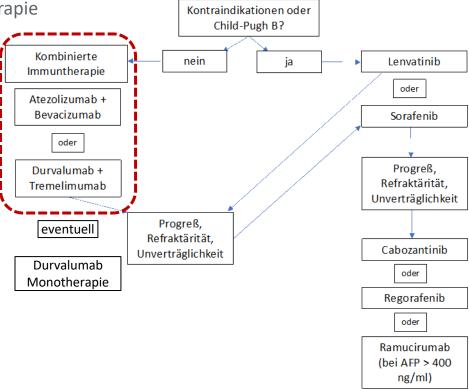
Lenvatinib a better option if:

- PS ECOG 0-1
- < 50% liver occupation.
- no bile duct/main portal vein invasion.
 - HBV chronic infection
 - AFP > 200 ng/mL
 - Child Pug A
 - < 45 y/o
 - lower costs
 - (downstaging)

Sorafenib a better option if:

- PS ECOG
- > 50% liver occupation
- bile duct/main portal vein invasion
 - HCV chronic infection.
 - AFP < 200 ng/mL
 - Child Pug B(7)
 - ≥ 75 y/o
 - higher costs
- transplant recipients, HIV infection, CKD

Dipasquale et al J Hepatovcell Carcinoma 2021; 8: 241–251.



HCC - Palliative systemische Therapie

Palliative systemische Therapie

HIMALAYA (STRIDE) oder IMBrave150?

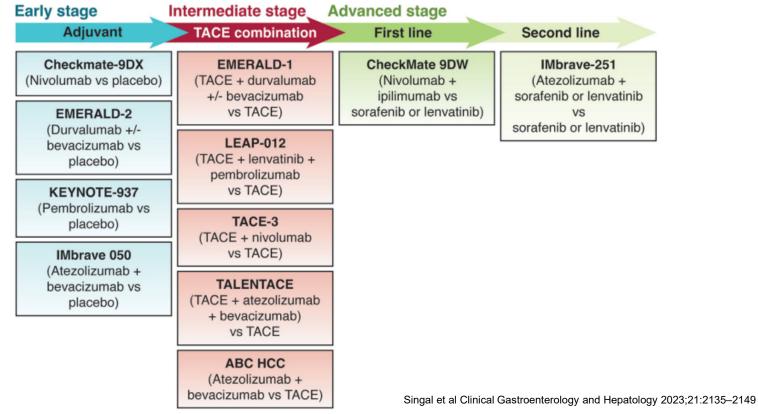
Durvalumab + Tremelimumab

• Autoimmunerkrankung?

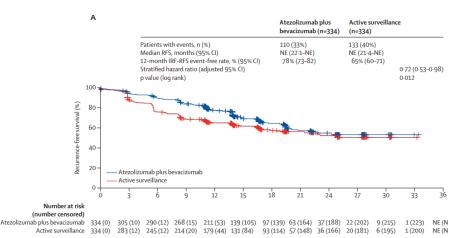
Atetzolizumab + Bevacizumab

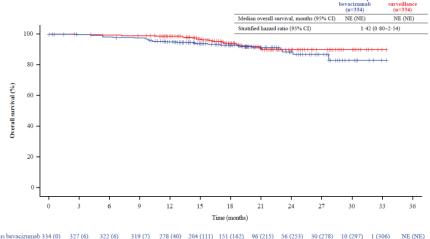
- Anwendung von BEV in Pat. mit Ösophagusvarizen!
- Gastroskopie erforderlich vor Einleitung Therapie

Wie geht's weiter?



Studienkonzepte 2023

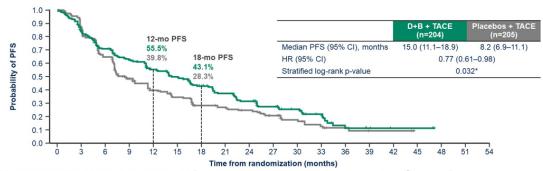


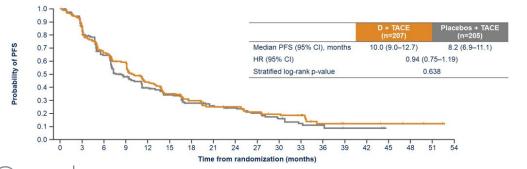


Atezolizumab plus

→ Keine Zulassung

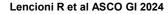
Atezolizumab plus bevacizumab 334 (0) Active surveillance



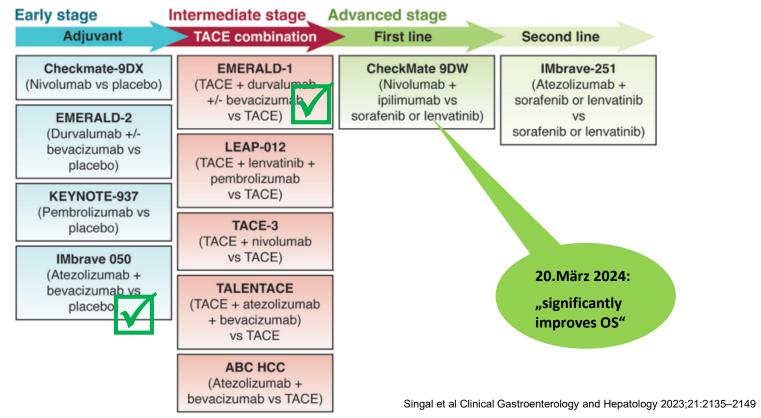

Verbesserung der TACE

TACE + Durvalumab +/- Bevacizumab

Median PFS was improved by 6.8 months with D+B + TACE versus placebos + TACE



PFS was not significantly improved with D + TACE versus placebos + TACE



→ Keine Zulassung

Studienkonzepte 2023

60

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Sebastian Stintzing

Klinikdirektor Medizinische Klinik m.S. Hämatologie, Onkologie und Tumorimmunologie (CCM) Charité - Universitätsmedizin Berlin

Campus Charité Mitte | Charitéplatz 1 | 10117 Berlin T +49 30 450 513 002 F +49 30 450 513 952

sebastian.stintzing@charite.de
www.tumor-online.de
www.charite.de

