Adjuvante Therapie des HCC Endlich "ready for prime time"?

13 Okt 2023 Gemeinsame Jahrestagung der DGHO, OeGHO, SGMO und SGH

Assoc. Prof. Dr. Lukas Weiss, PhD

CCCIT Center for Clinical Cancer and Immunology Trials LIMCR

Laboratory for Immunological and Molecular Cancer Research

MIT HÄMATOLOGIE, INTERNISTISCHER ONKOLOGIE, HÄMOSTASEOLOGIE, INFEKTIOLOGIE, RHEUMATOLOGIE UND ONKOLOGISCHES ZENTRUM

Offenlegung Interessenskonflikte

Employment: University Hospital Salzburg, Austria.

Leadership: Head of Colorectal Cancer Branch, Austrian Breast and Colorectal Cancer Study Group (ABCSG)

Stock and Other Ownership Interests: none

Honoraria: Amgen, Astellas, BMS, Daiichi-Sankyo, Lilly, Merck, MSD, Novocure, Pierre Fabre, Servier

Consulting or Advisory Role: Amgen, Astellas, BMS, GSK, Lilly, Merck, MSD, Novocure, Pharmamar, Pierre Fabre, Roche

Speakers' Bureau: none

Research Funding: Novocure, Roche, Servier

Patents, Royalties, Other Intellectual Property: none

Expert Testimony: none

Travel, Accommodations, Expenses: AstraZeneca, Merck, Pierre Fabre, Roche, Servier

Other Relationship: none

*Oct 2020 to Oct 2023

STORM – Recurrence Free Survival

Phase 3 RCT N=1,114 No benefit for adjuvant Sorafenib

	Soraf	enib	Placebo					HR (95% CI)
	n	Median RFS (months)	n	Median RFS (months)				
All patients (ITT)	556	33.3	558	33.7				0.940 (0.780-1.134
Age								
<65 years	383	38.5	361	38.5				0.942 (0.752-1.179)
≥65 years	173	27.8	197	32.9	_			1.007 (0.722-1.405)
Sex								
Male	451	33.1	461	35.8				0.951 (0.777-1.165)
Female	105	33.3	97	30.5				0.887 (0.564-1.396)
Region								
Americas	60	38.5	60	27.6				0.931 (0.513-1.691)
Asia-Pacific	330	38.5	330	39.0	_	_		1.006 (0.792-1.277)
Europe	166	24.8	168	22·1		_		0.871 (0.617-1.230)
Risk								
Intermediate risk	298	41·7	308	38.7				0.926 (0.710-1.209)
High risk	258	24.9	250	22.2				0.933 (0.721-1.207)
Child-Pugh status								
Child-Pugh A	541	33.3	538	35.8				0.954 (0.791-1.152)
Child-Pugh B	15	NE	20	27.6 —				0.760 (0.270-2.141)
Type of treatment								
Local ablation	106	19.6	108	22·1				0.970 (0.656-1.434)
Surgical resection	450	41·7	450	38.7				0.937 (0.759-1.156)
Cause of HCC								
Hepatitis B	282	41·7	264	38.7				0.900 (0.695-1.166)
Hepatitis C	119	25.5	151	16.7				0.849 (0.601-1.199)
Alcohol use	47	30.1	45	41.4				- 1.183 (0.614-2.280)
					-			
				0.2 0	•6 1.0	1.4	2.0	2.4
				Favours	sorafenib	Favours	s placebo	

Briux J et al. Lancet Oncol. 2015 Oct;16(13):1344-54.

Adjuvant Immunotherapy Trials

IMbrave 050

CheckMate 9DX – Study Design

Primary endpoint:

• RFS

Selected secondary and exploratory endpoints:

- OS
- Time to recurrence
- Safety and tolerability
- Biomarkers
- Pharmacokinetics
- Cancer-related QOL

Start date: April 2018 Estimated study completion date: December 2025 Estimated primary completion date: December 2023 Status: Active, not recruiting Study sponsor: Bristol Myers Squibb

1. ClinicalTrial.gov NCT03383458. Accessed August 2022. 2. Exposito MJJ et al. Poster presentation at ESMO; October 19–23, 2018; Munich, Germany. Poster 783TiP.

EMERALD-2 – Study Design

Study NCT03847428. ClinicalTrials.gov website.

Patients (N≈950)

- HCC diagnosis by radiological criteria and/or pathological confirmation
- Eligibility scan confirming complete radiological response ≥4 weeks following complete resection or local ablation
- No radiologic evidence of disease prior to enrollment
- ECOG PS 0-1
- Controlled HBV
- Child-Pugh Class Aa
- AFP <400 ng/mL within 28 days prior to Cycle 1, Day 1

Stratification: Region, prior local therapy, risk of recurrence, AFP level	Continue until: Up to 17 cycles, disease recurrence, ^b intolerable toxicity, investigator/patient decision to withdraw		
Primary End Points	Koy Secondary End Dainta		
r minary End r onits	Rey Secondary End Points		

R

1:1

1. clinicaltrials.gov/ct2/show/NCT03867084. Accessed March 1, 2023. 2. Goyal L et al. Presented at BASL 2021.

Pembrolizumab + BSC

Placebo

200 mg IV Q3W

Q3W

Imbrave050 – Study Design

Curative treatment	Criteria for high risk of HCC recurrence				
	 ≤3 tumors, with largest tumor >5 cm regardless of vascular invasion,^a or poor tumor differentiation (Grade 3 or 4) 				
Resection	 ≥4 tumors, with largest tumor ≤5 cm regardless of vascular invasion,^a or poor tumor differentiation (Grade 3 or 4) 				
	■ ≤3 tumors, with largest tumor ≤5 cm with vascular invasion, ^a and/or poor tumor differentiation (Grade 3 or 4)				
Ablation ^b	■ 1 tumor >2 cm but ≤5 cm				
	■ Multiple tumors (≤4 tumors), all ≤5 cm				

Imbrave050 – Statistics

Study endpoints

Primary endpoint

 Recurrence-free survival (RFS) assessed by independent review facility (IRF)

Secondary endpoints

- RFS assessed by investigator (INV)
- Time to recurrence assessed per IRF
- Overall survival (OS)

Other endpoints

· Safety

IMbrave050 – Baseline Characteristics

Characteristic	Atezo + bev (n=334)	Active surveillance (n=334)
Median age (range), years	60 (19-89)	59 (23-85)
Male sex, n (%)	277 (82.9)	278 (83.2)
Ethnicity, n (%)		
Asian	276 (82.6)	269 (80.5)
VVhite	35 (10.5)	41 (12.3)
Other	23 (6.9)	24 (7.2)
Geographic region, n (%)		
Asia Pacific excluding Japan rest of world	237 (71.0) 97 (29.0)	238 (71.3) 96 (28.7)
ECOG PS score, n (%)		
0 1	258 (77.2) 76 (22.8)	269 (80.5) 65 (19.5)
PD-L1 status, n (%) ^{a,b}		
≥1% <1%	154 (54.0) 131 (46.0)	140 (50.2) 139 (49.8)
Etiology, n (%)		
Hepatitis B	209 (62.6)	207 (62.0)
Hepatitis C	34 (10.2)	38 (11.4)
Non viral unknown	45 (13.5) 46 (13.8)	38 (11.4) 51 (15.3)
BCLC stage at diagnosis, n (%)		
0	2 (0.6)	3 (0.9)
A	287 (85.9)	277 (82.9)
В	25 (7.5)	32 (9.6)
С	20 (6.0)	22 (6.6)

IMbrave050 – Baseline Characteristics

Characteristic	Atezo + bev (n=334)	Active surveillance (n=334)
Resection, n (%)	293 (87.7)	292 (87.4)
Longest diameter of the largest tumor at diagnosis, median (range), cm ^a Tumors, n (%)	5.3 (1.0-18.0)	5.9 (1.1-25.0)
1	266 (90.8)	260 (89.0)
2	20 (6.8)	29 (9.9)
3	4 (1.4)	2 (0.7)
4+	3 (1.0)	1 (0.3)
Adjuvant TACE following resection, n (%)	32 (10.9)	34 (11.6)
Any tumors >5 cm, n (%)	152 (51.9)	175 (59.9)
Microvascular invasion present, n (%)	178 (60.8)	176 (60.3)
Minor macrovascular invasion (Vp1/Vp2) present, n (%)	22 (7.5)	17 (5.8)
Poor tumor differentiation (Grade 3 or 4), n (%)	124 (42.3)	121 (41.4)
Ablation, n (%)	41 (12.3)	42 (12.6)
Longest diameter of the largest tumor at diagnosis, median (range), cm	2.5 (1.2-4.6)	2.6 (1.5-4.6)
Tumors, n (%)		
1	29 (70.7)	31 (73.8)
2	11 (26.8)	8 (19.0)
3	1 (2.4)	3 (7.1)

IMbrave050 – Recurrence Free Survival

Baseline risk factors	No. of patients	Unstratified	HR (95% CI)	Baseline risk factors	No. of patients	Unstratified	HR (95% CI)
All patients	668	-+ -	0.74 (0.57, 0.95)	Hepatitis B etiology	416		0.87 (0.63, 1.20)
<65 years old	427		0.80 (0.58, 1.08)	Hepatitis C etiology	72 —	↓	0.65 (0.30, 1.40)
≥65 years old	241		0.64 (0.41, 1.00)	Non-viral etiology	83 —	¢	0.70 (0.34, 1.42)
Male	555		0.74 (0.56, 0.98)	Unknown etiology	97 —	◆ !	0.45 (0.23, 0.89)
Female	113		0.73 (0.38, 1.40)	Resection	585	_	0.75 (0.58, 0.98)
Asian	545	 _	0.75 (0.56, 0.99)	Ablation	83 —	·	0.61 (0.26, 1.41)
White	78 ·	↓	0.59 (0.28, 1.25)	In patients who underwent rese	ction		
Other race	45	\$!	0.91 (0.36, 2.29)	1 tumor	526		0.77 (0.58, 1.03)
ECOG PS 0	527	_ ← ¦	0.65 (0.48, 0.87)	>1 tumors	59 —	→	0.60 (0.28, 1.27)
ECOG PS 1	141		1.13 (0.67, 1.91)	Tumor size >5 cm	327	→	0.66 (0.48, 0.91)
PD-L1 ≥1%	294		0.82 (0.55, 1.20)	Tumor size ≤5 cm	258		1.06 (0.65, 1.74)
PD-L1 <1%	270		0.62 (0.43, 0.91)	mVI present	354		0.79 (0.56, 1.10)
Unknown PD-L1	104		0.82 (0.39, 1.71)	mVI absent	231		0.69 (0.45, 1.06)
1 high-risk feature ^a	311		0.74 (0.48, 1.14)	Poor tumor differentiation	245		0.76 (0.51, 1.12)
≥2 high-risk featuresª	274		0.77 (0.55, 1.08)	No poor tumor differentiation	340		0.74 (0.52, 1.07)
BCLC 0/A	569		0.78 (0.59, 1.04)	Received TACE	66	+	- 1.21 (0.57, 2.59)
BCLC B	57 -		0.44 (0.18, 1.08)	Did not receive TACE	519	I	0.71 (0.53, 0.94)
BCLC C	42		0.73 (0.31, 1.73)		· · · · ·	-	
					0,3 🗸	← 1 →	• 3
	0,	3 ← 1→	3		Atezo	+ bev Act	ive
	- ,	Atezo + bev Ac	tive		be	tter surveillan	ce better
		better surveilla	nce better				

IMbrave050 – Overall Survival

- OS is highly immature, with a 7% event-patient ratio (n=47). There were:
 - 7 more deaths in the atezo + bev arm (27 vs 20)
 - Similar number of deaths due to HCC recurrence
 - 3 COVID-19-related deaths within 1 year of randomization, all in the atezo + bev arm
- Patients in the active surveillance arm were allowed to cross over to receive atezo + bev either directly after IRF-confirmed recurrence or following a second resection or ablation
- Of the 133 patients with an RFS event during active surveillance, 81 (61%) crossed over to atezo + bev

n (%)	Atezo + bev (n=334)	Active surveillance (n=334)
All deaths	27 (8.1)	20 (6.0)
Progressive disease	17 (63.0)	16 (80.0)
Adverse events	6 (22.2)	1 (5.0)
Other	4 (14.8)	3 (15.0)

	Atezo + bev (n=332)	Active surveillance (n=330)	IMbrave150 ^{1,2} (n=329)
Treatment duration, median, mo	Atezo: 11.1 Bev: 11.0	NA	Atezo: 7.4 Bev: 6.9
Patients with ≥1 AE, n (%)	326 (<mark>98.2</mark>)	205 (62.1)	323 (<mark>98.2</mark>)
Treatment-related AE	293 (88.3)	NA	276 (83.9)
Grade 3/4 AE, n (%)	136 (<mark>41.0</mark>)	44 (13.3)	186 (56.5)
Treatment-related Grade 3/4 AE	116 (34.9)	NA	117 (35.6)
Serious AE, n (%)	80 (<mark>24.1</mark>)	34 (10.3)	125 (38.0)
Treatment-related serious AE	44 (13.3)	NA	56 (17.0)
Grade 5 AE, n (%)	6 (1.8)	1 (0.3)	15 (4.6)
Treatment-related Grade 5 AE	2 (0.6) ^a	NA	6 (1.8)
AE leading to dose interruption of any study treatment, n (%)	155 (46.7)	NA	163 (49.5)
AE leading to withdrawal from any study treatment, n (%)	63 (19.0)	NA	51 (15.5)

AE of any grade ≥10%

Event, n (%)	Atezo (n=	Atezo + bev (n=332)		Active surveillance (n=330)		
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4		
Proteinuria	154 (46.4)	29 (8.7)	12 (3.6)	0		
Hypertension	127 (38.3)	61 (18.4)	10 (3.0)	3 (0.9)		
Platelet count decreased	66 (19.9)	15 (4.5)	22 (6.7)	4 (1.2)		
Aspartate aminotransferase increased	52 (15.7)	3 (0.9)	18 (5.5)	2 (0.6)		
Alanine aminotransferase increased	47 (14.2)	2 (0.6)	18 (5.5)	3 (0.9)		
Hypothyroidism	47 (14.2)	0	1 (0.3)	0		
Arthralgia	40 (12.0)	1 (0.3)	8 (2.4)	1 (0.3)		
Pruritus	40 (12.0)	1 (0.3)	3 (0.9)	0		
Rash	40 (12.0)	0	1 (0.3)	0		
Blood bilirubin increased	34 (10.2)	1 (0.3)	23 (7.0)	1 (0.3)		
Pyrexia	34 (10.2)	0	7 (2.1)	0		

- 1st positive trial demonstrating RFS improvement
- RFS benefit consistent across key clinical subgroups
- at prespecified interim analysis, OS was highly immature longer follow-up for OS is needed
- safety profile generally consistent with previous reports

IMbrave050 – Patient Reported Outcome

Change from baseline in IL42–EORTC QLQ-C30 scales

Health-related QoL and functioning scores

were comparable throughout treatment

Whom to treat?

SCRI | CCCIT | LIMCR

AASLD Guidelines 2023

AASLD recommendation for adjuvant Atezolizumab & Bevacizumab in patients at high risk of recurrence after liver resection or local ablation (Level 2, Strong Recommendation)

Singal AG et al. Hepatology. 2023.

Bimodal recurrence after HCC resection

1. Reig et al. J Hepatol 2022; 2. Guo et al. Cancer Manag Res 2018; 3. Torzilli et al. Arch Surg 2008; 4. Imamura et al. J of Hepatology 2003; 5. Jung et al. J Gastrointest Surg 2019

1.) near treated areas¹

may occur in the same Couinaud segment as the treated HCC

2.) de novo intrahepatic recurrence² i.e. multicentric HCC

60–70% of recurrences

30–40% of recurrences

1 Minagawa M et al. Ann Surg. 2001 Mar; 233(3): 379-84.

2 Takayama T et al. Lancet 1990 Nov 10;336(8724):1150-3

Types of Recurrence

de novo recurrence:

- developed genetically independently of the primary tumor
- carries different HCC drivers

Shao-Lai Zhou et al Signal Transduct Target Ther 2022 Jan 26;7(1):24

Types of Recurrence

Whole Genome Sequencing hepatitis B virus related HCC N=40

relapse of ancestral origin: bigger size & higher grade

relapse of ancestral origin: shorter OS

Shao-Lai Zhou et al Signal Transduct Target Ther 2022 Jan 26;7(1):24

Effect of adjuvant therapy?

Curative treatment	Criteria for high risk of HCC recurrence			
	 ≤3 tumors, with largest tumor >5 cm regardless of vascular invasion,^a or poor tumor differentiation (Grade 3 or 4) 			
Resection	 ≥4 tumors, with largest tumor ≤5 cm regardless of vascular invasion,^a or poor tumor differentiation (Grade 3 or 4) 			
	■ ≤3 tumors, with largest tumor ≤5 cm with vascular invasion, ^a and/or poor tumor differentiation (Grade 3 or 4)			
Ablationh	■ 1 tumor >2 cm but ≤5 cm			
	■ Multiple tumors (≤4 tumors), all ≤5 cm			

> How will trials without high risk selection perform?

Circulating Tumor DNA (ctDNA)

Liquid biopsy: monitoring cancer-genetics in the blood

Emily Crowley, Federica Di Nicolantonio, Fotios Loupakis and Alberto Bardelli Nature Reviews Clinical Oncology 10, 472-484 (August 2013) | doi:10.1038/nrclinonc.2013.110

HCC, N=96 all underwent radical resection

"tumor informed approach" ctDNA+ based on mutational profile of resected HCC

Ye K et al. Front Oncol. 2022 Mar 4:12:834992.

West J et al. Aliment. Pharmacol. Ther 45, 983–990 (2017).

HCC & etiology

HCC, N=1,051 treated at 2 big US centers

3	NASH	ALD	HCV	HBV	
Factor	(n=92)	(n=153)	(n=719)	(n=87)	P Value
Child-Pugh score, n (%)					<.001
A	56 (60.9)	45 (29.4)	341 (47.4)	52 (59.8)	
В	27 (29.3)	71 (46.4)	285 (39.6)	28 (32.2)	
С	9 (9.8)	37 (24.2)	93 (12.9)	7 (8.0)	
Cirrhosis, n (%)					<.001
No	15 (16.3)	8 (5.2)	48 (6.7)	13 (14.9)	
Level 1 noncirrhosis (% of no)	13 (86.7)	4 (50.0)	25 (52.1)	9 (69.2)	
Level 2 noncirrhosis (% of no)	2 (13.3)	4 (50.0)	23 (41.9)	4 (30.8)	
Yes	77 (837)	145 (94.8)	671 (93.3)	74 (85.1)	

- Alcohol-associated Liver Disease ALD NASH Non-Alcoholic SteatoHepatitis
- Hepatitis C Virus HCV HBV
 - Hepatitis B Virus

Hester CA et al. J Natl Compr Canc Netw. 2019 Apr 1;17(4):322-329

Regional Differences

Leading causes of incident cases of HCC and deaths

60 55 53 50 44 41 38 37 40 Patients, % 33 32 31 30 29 30 27 27 24 ²²21 22 20 19 18 20 16 13 10 0 Western Europe Central Europe Eastern Europe Global North America South Latin Asia-Pacific South-East Asia North Africa & Southern Sub-Oceania America Middle East Saharan Africa

Contribution of HBV, HCV, alcohol and other causes to absolute liver cancer* deaths (2015 data)¹

Alcohol HBV HCV Others

Singal et al. J Hepatol 2020: 72(2):250-261

OS in HCC – Global Variation

	Countries	Median survival (months)
-	Taiwan	Not reached
-	Japan	60
-	North America	33
-	South Korea	31
-	Europe	24
-	China	23
-	Egypt	11
—	Other African countries	3

Yang JD et al. Nat Rev Gastroenterol Hepatol. 2019

Role of Local Treatment

BCLC Guidelines - (Very) Early Stage

Resection vs Ablation:

- resection is superior to ablation (RFS)
- non-inferior in small lesions (≤2cm)
- higher complication rate with surgery
- > preoperative liver function assessment
- > patient selection

Reig M et al. J Hepatol. 2022 Mar;76(3):681-693.

RFA vs Surgery – RCT

China, single center

HCC within Milan Criteria:

- 1 lesion \leq 5 cm or 3 lesions \leq 3 cm
- no evidence of gross vascular invasion N=230

1° endpoint: Overall survival (OS)

2° endpoints: Recurrence free survival (RFS) Overall Recurrence

TABLE 1. Clinical Characteristics of Patients in the 2 Study Groups			
Group Variable	RES n = 115	RFA n = 115	<i>P</i> value
Age (year)	55.91±12.68	56.57 ± 14.30	t = 0.373 $P = 0.709$
Sex (men/women)	85/30	79/36	$\chi^2 = 0.765 P = 0.382$
HBV infected	104	101	$\chi^2 = 0.404 P = 0.525$
HCV infected	6	4	$\chi^2 = 0.105 P = 0.746*$
None-HBV and HCV	5	10	$\chi^2 = 1.783$ $P = 0.182$
Liver cirrhosis	75	67	$\chi^2 = 1.178 P = 0.278$
Solitary tumor size>/<3cm	44/45	27/57	$\chi^2 = 5.342 P = 0.021$
Tumor number 1/2/3	89/23/3	84/30/1	$\chi^2 = 0.583 P = 0.445^{\dagger}$

Huang J et al. Annals of Surgery 2010

RFA

by courtesy of Reto Bale

Shindo J et al. J Hepatol 2016

Anatomic vs Non-Anatomic Resection

Randomized Controlled Trial

Single center, China

Inclusion Criteria:

HCC diagnosis Child–Pugh A & ICGR-15 <14% ≤2 tumors limited to one side of the liver

Exclusion Criteria:

≥ moderate portal hypertension tumor invasion or thrombosis in major hepatic vessels extrahepatic metastases tumors located in the caudate lobe

Local recurrence-free survival better with anatomic resection

Xiaobin Feng et al. HPB (Oxford) . 2017 Aug;19(8):667-674.

IMbrave050 Atezolizumab & Bevacizumab

- 1st positive adjuvant therapy trial in HCC
- possibly practice changing (additional OS data?)
- patient selection is key
- more data in caucasian patients / non-viral HCC desirable

lu.weiss@salk.at

http://www.rarediseaseday.org

Salzburg CCCIT Cancer Center for Research Clinical Cancer Institute and Immunology Trials

LIMCR

Laboratory for Immunological and Molecular Cancer Research

universitätsklinik für INNERE MEDIZIN III

MIT HÄMATOLOGIE, INTERNISTISCHER ONKOLOGIE, HÄMOSTASEOLOGIE, INFEKTIOLOGIE, RHEUMATOLOGIE UND ONKOLOGISCHES ZENTRUM

®

Austrian Group • Medical • Tumor Therapy