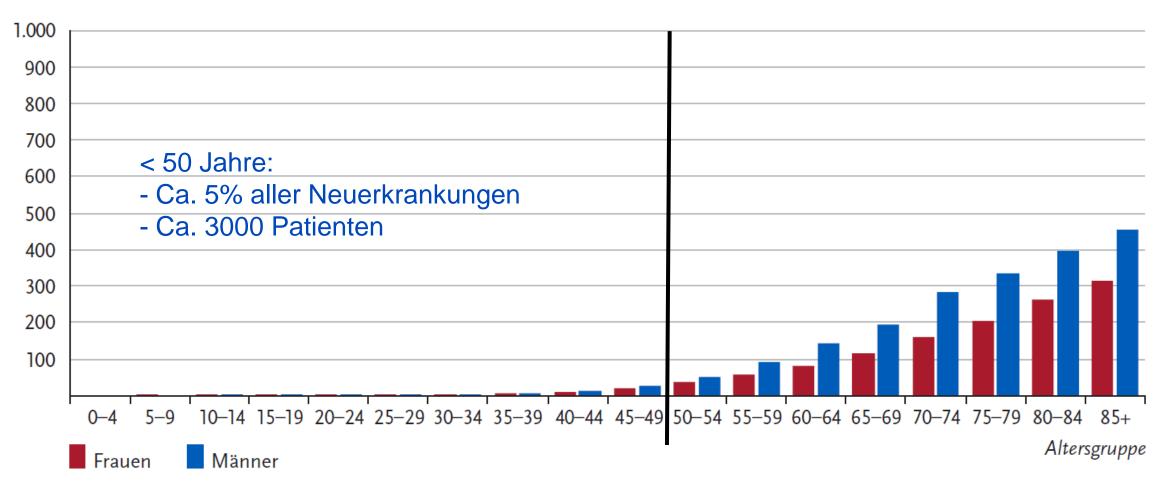
Epidemiologie und Prävention von Darmkrebs bei jungen Erwachsenen

Prävention von frühen Darmkrebserkrankungen


Prof. Dr. Hermann Brenner

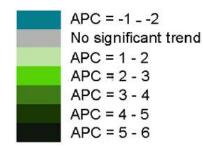
Deutsches Krebsforschungszentrum, Heidelberg Abteilung Klinische Epidemiologie und Alternsforschung

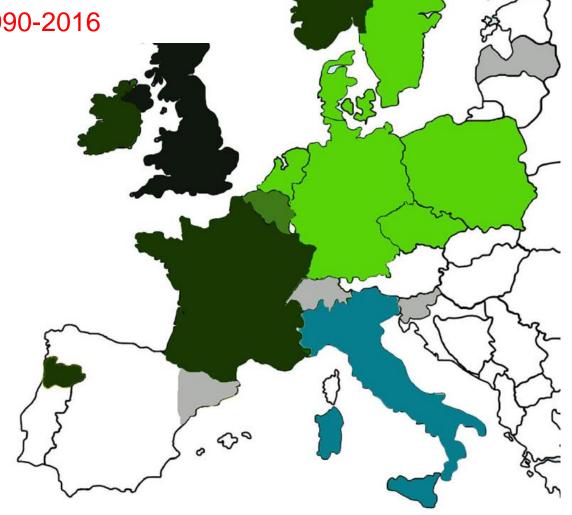
Altersspezifische Inzidenz an Darmkrebs in Deutschland



Zentrum für Krebsregisterdaten, Krebs in Deutschland 2017/2018

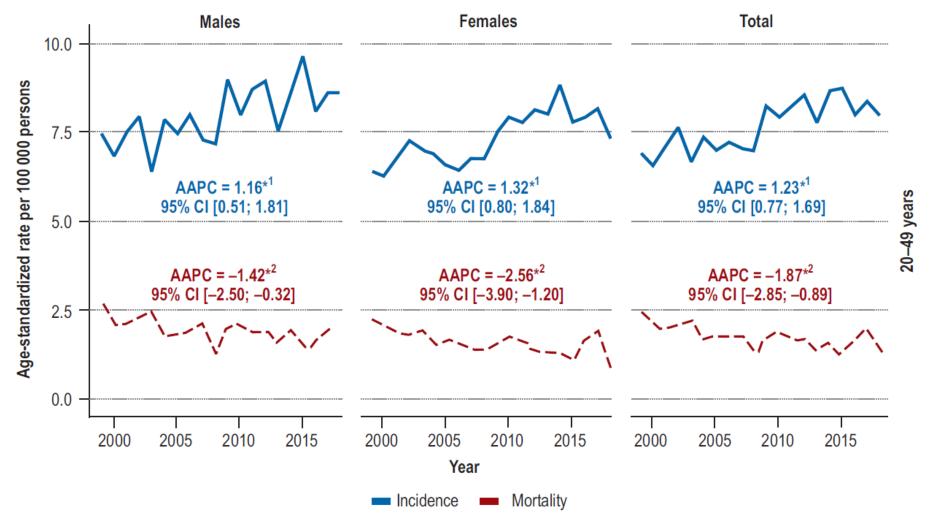
Trends der altersstand. Darmkrebs-Inzidenz in den USA 1998-2019 nach Alter und Stadium





Siegel et al, CA Cancer J Clin 2023;73:233-54

Jährliche prozentuale Änderung (APC) der Darmkrebsinzidenz in europäischen Ländern im Alter von 20 bis 39 Jahren in 1990-2016



Vuik et al, Gut 2019;68:1820-8

Jährliche prozentuale Änderung (AAPC) der Darmkrebs-Inzidenz und -Mortalität in Deutschland 20-49 Jahre, 1999-2018

Tanaka et al, Dtsch Aerztebl Int 2023;120:59-64

Jährliche prozentuale Änderung (AAPC) der Darmkrebs-Inzidenz in Deutschland nach Lokalisation 20-49 Jahre, 1999-2018

Site /subsite (ICD-10)	Males			Females			Total		
	AAPC	95% CI	Trend	AAPC	95% CI	Trend	AAPC	95% CI	Trend
Colon (C18)	1.62	[0.69; 2.56]	Increasing	1.39	[0.55; 2.24]	Increasing	1.51	[0.76; 2.27]	Increasing
Proximal colon (C18.0–C18.4)	3.26	[2.00; 4.53]	Increasing	2.99	[2.17; 3.83]	Increasing	3.10	[2.24; 3.97]	Increasing
Distal colon (C18.5–C18.7)	0.95	[-0.23; 2.15]	Stable	0.55	[-0.62; 1.73]	Stable	0.76	[-0.27; 1.81]	Stable
Colon overlapping / NOS (C18.8–C18.9)	-2.28	[-4.18; -0.34]	Decreasing	-2.97	[-5.73; -0.12]	Decreasing	-2.39	[-4.05; -0.68]	Decreasing
Rectum (C19–C20)	0.57	[-0.18; 1.33]	Stable	1.29	[0.38; 2.20]	Increasing	0.87	[0.28; 1.46]	Increasing

Tanaka et al, Dtsch Aerztebl Int 2023;120:59-64

Jährliche prozentuale Änderung (AAPC) der Darmkrebs-Inzidenz in Deutschland nach Stadium 20-49 Jahre, 1999-2018

T category	Males			Females			Total		
of the TNM classification	AAPC	95% CI	Trend	AAPC	95% CI	Trend	AAPC	95% CI	Trend
T1 and T2	2.96	[1.54; 4.39]	Increasing	4.84	[3.35; 6.34]	Increasing	3.85	[2.75; 4.96]	Increasing
T3+	1.07	[0.32; 1.82]	Increasing	0.22	[-0.40; 0.84]	Stable	0.67	[0.17; 1.18]	Increasing
Unknown	0.07	[-1.32; 1.47]	Stable	0.67	[-0.68; 2.04]	Stable	0.36	[-0.80; 1.54]	Stable

Tanaka et al, Dtsch Aerztebl Int 2023;120:59-64

GEFÖRDERT VOM

Mit Unterstützung von:

Übergeordnete Ziele

Das Verbundprojekt PEARL hat zum Ziel, ...

...neue Erkenntnisse zum Verständnis der Risikofaktoren, Ursachen und molekularen Besonderheiten von Darmkrebs bei jungen Erwachsenen zu gewinnen, sowie

...neue Strategien für die Primär- und Sekundärprävention in dieser Altersgruppe zu entwickeln und zu bewerten.

Spezifische Ziele

- Die Quantifizierung und Evaluation der Rolle von veränderbaren und nicht-veränderbaren Risikound protektiven Faktoren von Darmkrebs bei jungen Erwachsenen
- Die molekular- und digitalpathologische Charakterisierung der Tumoren und die Untersuchung Subtypen-spezifischer Assoziationen mit Risikofaktoren
- Die Abschätzung des vermeidbaren Anteils der Erkrankungen durch primärpräventive Maßnahmen
- Die Entwicklung und Evaluation neuer, Risiko-angepasster Screening-Ansätze
- Die Umsetzung eines neuen, personalisierten Ansatzes der Sekundärprävention bei Verwandten von Personen mit fortgeschrittenen kolorektalen Neubildungen

Prävention von frühen Darmkrebserkrankungen

Verbundstruktur

Subprojekt 1

PI: Brenner (DKFZ)

Co-PI: Hoffmeister (DKFZ)

Kooperationspartner

Fallah (DKFZ)
Schrotz-King (DKFZ)

Bevölkerungsbezogene

Daten und Biobanken

von Patienten mit Darmkrebs
unter 50 Jahren, PEARL-Studie

Subprojekt 2

Netzwerkkoordinator

Brenner (DKFZ)

PI: Hoffmeister (DKFZ)
Co-PI: Kather (Uni Dresden)

Kooperationspartner

Brobeil (Pathologie, Uni HD) Kloor (Pathologie, Uni HD) Roth (Pathologie, Uni Mainz)

Molekularpath. Epidemiologie und künstliche Intelligenz für eine präzisere Charakterisierung von Darmkrebs bei jungen Erwachsenen.

Subprojekt 3

PI: Brenner (DKFZ)
Co-PIs: Mons (Uni Köln),
Fallah (DKFZ)

Kooperationspartner Schmidt (IDZB, Bonn)

Integration der Ergebnisse aus epidemiologischen Studien für die Entwicklung neuer Strategien der Primär- und Sekundärprävention.

Subprojekt 1

PI: Brenner (DKFZ)
Co-PI: Hoffmeister (DKFZ)

Kooperationspartner

Fallah (DKFZ)
Schrotz-King (DKFZ)

Bevölkerungsbezogene **Daten und Biobanken**von Patienten mit Darmkrebs
unter 50 Jahren, PEARL-Studie

WP 1: Daten und Biobanken

- PEARL-Studie, ausführliche Vorstellung folgt gleich
- Daten und Bioproben der **DACHS-Studie** mit 400 Fällen und 400 Kontrollen <50 Jahren, mit zusätzlicher Langzeitnachbeobachtung der Fälle.
- Daten und Bioproben der KOLOSSAL-, BLITZ-, RAPS-, ASTER-, DARIO-, GEKKO- und LEO-Studien mit Daten und Bioproben von etwa 1600 Teilnehmer unter 50 Jahren.
- **GECCO-Konsortium**: Zugang zu genetischen Daten und harmonisierten epidemiologischen Daten von mehreren tausend internationalen EOCRC-Fällen und -Kontrollen.
- NAKO: bundesweite Kohortenstudie
- Swedish Family-Cancer Database
- UK Biobank
- WP 2: Labor, Probenlagerung und -analysen

Subprojekt 2

Subprojekt 2

PI: Hoffmeister (DKFZ)
Co-PI: Kather (Uni Dresden)

Kooperationspartner

Brobeil (Pathologie, Uni HD) Kloor (Pathologie, Uni HD) Roth (Pathologie, Uni Mainz)

Molekularpath. Epidemiologie und künstliche Intelligenz für eine **präzisere Charakterisierung** von Darmkrebs bei jungen Erwachsenen.

WP 1: Molekularpathologische Epidemiologie

- Tumorproben und Daten aus Subprojekt 1
- Molekularpathologische Charakterisierung von Tumor-Subtypen und immunolog. Marker in Zusammenarbeit mit A. Brobeil, M. Kloor (Uni HD) und W. Roth (UK Mainz).
- Assoziationsanalysen mit Risiko und Prognose auf Subtypen-Ebene.

WP 2: Digitale Pathologie & Künstliche Intelligenz

- Tumorbilder aus WP 1, Daten aus Subprojekt 1.
- Methoden der **bildbasierten, künstlichen Intelligenz** zur besseren Differenzierung von Tumor-Subtypen bzgl. Ätiologie, Krankheitsverlauf und Präventionsmöglichkeiten.

WP 1 & WP 2:

Gemeinsame Anwendung von **Molekularpath. Epidemiologie** und **Künstlicher Intelligenz** für ein besseres Verständnis des Risikos und des Präventionspotenzials.

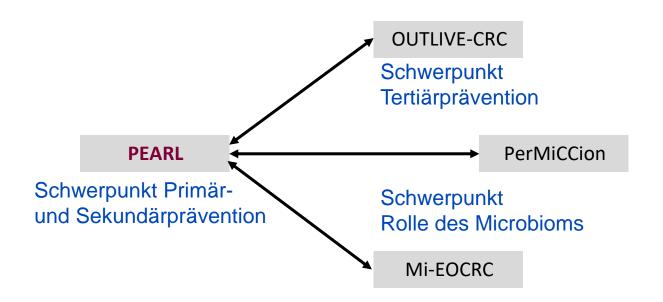
Subprojekt 3

PI: Brenner (DKFZ)
Co-PIs: Mons (Uni Köln),
Fallah (DKFZ)

Kooperationspartner Schmidt (IDZB, Bonn)

Integration der Ergebnisse aus epidemiologischen Studien für die **Entwicklung neuer Strategien** der Primär- und Sekundärprävention.

Subprojekt 3

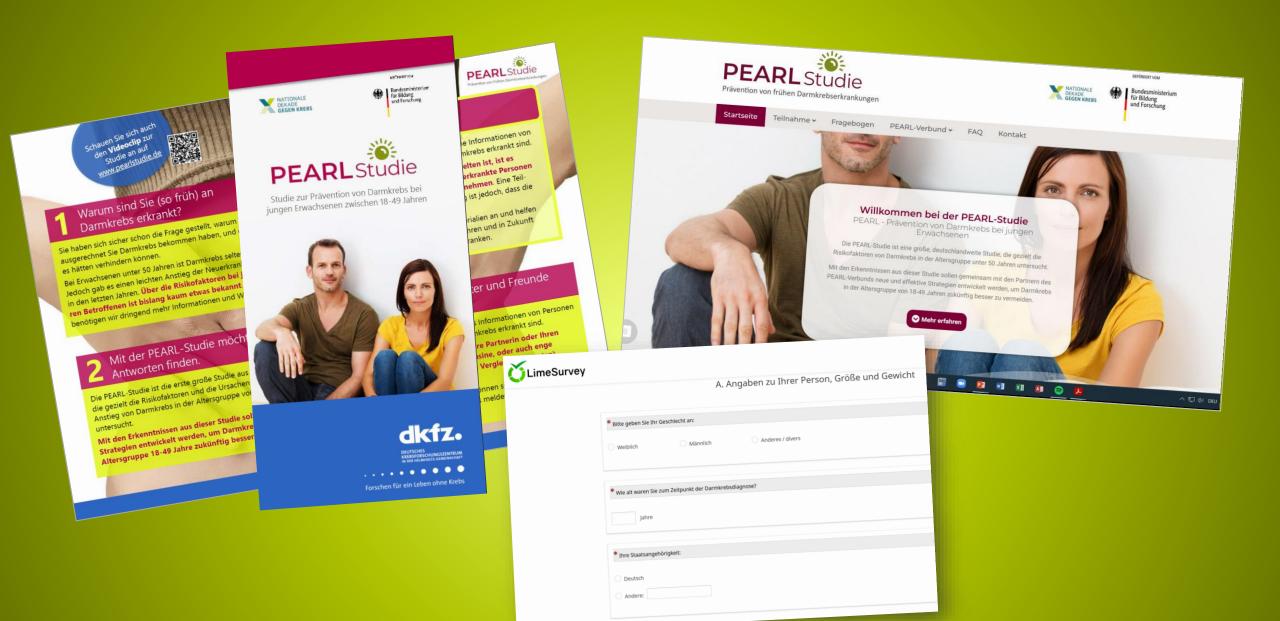

Entwicklung neuer Strategien der Primär- & Sekundärprävention

- Daten und Ergebnisse aus den Subprojekten 1 und 2
- **WP 1:** Quantifizierung der Rolle von modifizierbaren und nicht modifizierbaren Risikofaktoren und präventiven Faktoren.
- WP 2: Potential von Strategien der Primärprävention.
- WP 3: Neue risikoadaptierte Möglichkeiten des Screenings.
- **WP 4:** Implementierung der risikoadaptierten Prävention in der klinischen Praxis (insbes. Personen mit familiärer Vorgeschichte)

Vernetzung

- Komplementäre Schwerpunkte der BMBFgeförderten Verbünde.
- Hohes Synergiepotenzial durch Vernetzung.

Mit Unterstützung von:



Prävention von frühen Darmkrebserkrankungen

- Deutschlandweite Fall-Kontroll-Studie
- Dauer: zunächst 4 Jahre, 200 Fälle / 200 Kontrollen pro Jahr
- Erkrankte Personen 18-49 Jahre werden über Darmkrebszentren kontaktiert (auch über soziale Medien, Stiftungen, Vereine, Register)
- Nicht erkrankte Kontrollpersonen aus dem Umfeld der Fälle (z.B. Partner, Geschwister, Freunde)
- Studienwebsite (<u>www.pearlstudie.de</u>), Online-Fragebogen, Befunde
- Stuhlprobe, Blutprobe

Rekrutierung

- 1) Recherche und Anschreiben über Damkrebszentren
- Patienten/-innen melden sich daraufhin im DKFZ-Studienzentrum
- 3) Fragebogen, Proben, Befunde ans DKFZ-Studienzentrum
- 4) Patienten/-innen bitten Personen aus ihrem direkten Umfeld um Teilnahme als Vergleichsperson

Oktober 2023: >200 Patienten und >150 Kontrollpersonen rekrutiert

Rekrutierung der Patienten

Recherche/Kontaktaufnahme durch:

- Darmkrebszentren, Anschreiben ~2x / Jahr

Zielgruppe: Personen mit

Darmkrebsdiagnose im Alter von 18-49 Jahren (EOCRC-Fälle) vor ≤ 1 Jahr Aufgabe des Darmkrebszentrums

Teilnehmer:

Rückmeldung der Teilnahmebereitschaft ans Studienzentrum

Studienzentrum, Zusendung von:

- Teilnehmerinformation
- Einwilligungserklärung
- Stuhlprobenset, Blutprobenset

Teilnehmer:

- Einwilligung zur Teilnahme
- Ausfüllen des Online-Fragebogens
- Entnahme einer Stuhlprobe
- Blutprobenentnahme beim Arzt

Studienzentrum:

- Medizinische Befunde einholen
- Tumorprobe einholen
- Follow-up Infomationen einholen

Erste Ergebnisse (DACHS-Studie) Übergewicht und Darmkrebs bei jungen Erwachsenen

Table 2. Associations of Body Mass Index Measured at Different Ages With Early-Onset Colorectal Cancer Risk

Variable	Cases, n (%)	Controls, n (%)	Adjusted ^a OR (95% CI)	Adjusted ^b OR (95% CI)
BMI at age 20 y ^c				
<25 kg/m ²	596 (81)	538 (87)	1 (Ref)	1 (Ref)
25 to <30 kg/m ²	104 (14)	71 (11)	1.32 (0.95–1.83)	1.10 (0.78–1.57)
≥30 kg/m²	32 (5)	10 (2)	2.84 (1.38-5.83)	2.56 (1.20-5.44)
Per 5-kg/m ² increase	732 (100)	619 (100)	1.54 (1.28–1.86)	1.44 (1.18–1.75)
BMI at age 30 y ^d <25 kg/m ² 25 to <30 kg/m ² ≥30 kg/m ² Per 5-kg/m ² increase	467 (63) 201 (28) 68 (9)	452 (73) 142 (23) 26 (4)	1 (Ref) 1.37 (1.06–1.77) 2.49 (1.55–3.99) 1.45 (1.24–1.70)	1 (Ref) 1.34 (1.02–1.77) 2.06 (1.25–3.40) 1.36 (1.15–1.61)
	736 (100)	620 (100)	1.45 (1.24–1.70)	1.30 (1.13–1.01)
BMI ~ 10 y before diagnosis or interview ^e <25 kg/m ² 25 to <30 kg/m ² ≥30 kg/m ² Per 5-kg/m ² increase	359 (48) 262 (35) 121 (17) 742 (100)	374 (60) 187 (30) 59 (10) 620 (100)	1 (Ref) 1.50 (1.18–1.92) 2.17 (1.54–3.07) 1.43 (1.25–1.64)	1 (Ref) 1.46 (1.13–1.90) 1.88 (1.30–2.73) 1.36 (1.18–1.58)

Li et al, Gastroenterology 2022;162:1088-97

Erste Ergebnisse (DACHS-Studie) Rauchen und Darmkrebs bei jungen Erwachsenen

Table 2. Associations of smoking with early- and late-CRC risk

	<55 years				≥55 years				
Smoking exposure	Cases No. (%)	Controls No. (%)	OR ^a (95% CI)	OR ^b (95% CI)	Cases No. (%)	Controls No. (%)	OR ^a (95% CI)	OR ^b (95% CI)	P _(interaction) c
	110. (70)	110. (70)	OR (55% GI)	OR (55% CI)	110. (70)	110. (70)	OR (55% GI)	OK (55% CI)	
Smoking status									.40
Never	277 (38)	391 (50)	1 (Ref)	1 (Ref)	2527 (46)	3141 (52)	1 (Ref)	1 (Ref)	
Former	216 (30)	208 (26)	1.47 (1.15 to 1.88)	1.39 (1.07 to 1.81)	2267 (41)	2333 (38)	1.25 (1.15 to 1.35)	1.24 (1.13 to 1.36)	
Current	231 (32)	188 (24)	1.74 (1.36 to 2.23)	1.57 (1.20 to 2.04)	746 (13)	605 (10)	1.60 (1.41 to 1.81)	1.46 (1.28 to 1.67)	
Pack-years	()	, ,	,	,	` /	, ,	,	,	.20
0	277 (38)	391 (50)	1 (Ref)	1 (Ref)	2527 (46)	3141 (52)	1 (Ref)	1 (Ref)	
1-15	242 (33)	237 (30)	1.44 (1.14 to 1.83)	1.39 (1.08 to 1.79)	1444 (26)	1514 (25)	1.22 (1.11 to 1.34)	1.25 (1.13 to 1.38)	
≥16	205 (29)	· /	1.85 (1.42 to 2.41)	,	\ <i>'</i>	` '	,	,	
Per 10 pack-years	· /	\ /	,	1.15 (1.05 to 1.27)	` '	()	,	1.05 (1.03 to 1.08)	

^a Adjusted for age and sex. CI = confidence interval; NSAIDs = nonsteroidal antiinflammatory drugs; OR = odds ratio; Ref = reference.

 c $P_{interaction}$ between age (<55 or \geq 55 years) and smoking exposure in the comprehensively adjusted model (model B).

Li et al, JNCI Spectrum 2023;7(1):pkad004

b Additionally adjusted for previous endoscopy, family history of CRC, education, BMI approximately 10 years before diagnosis (cases) or interview (controls), alcohol consumption, NSAID use (including aspirin), physical activity, and diabetes.

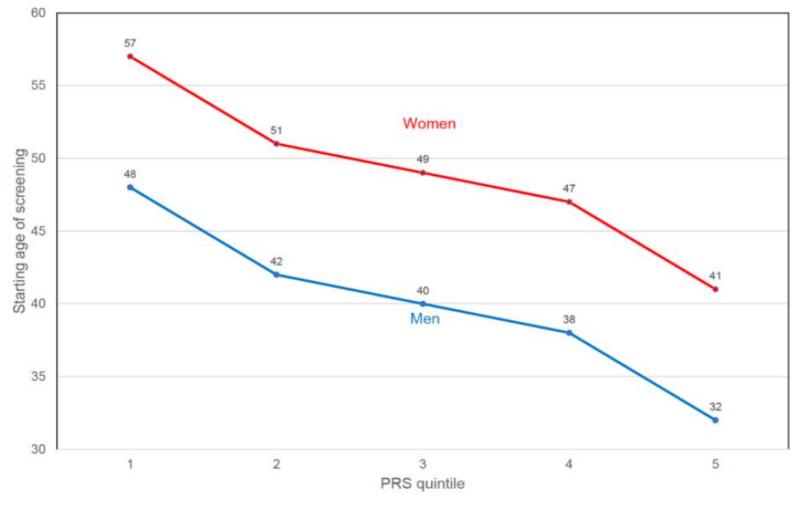
Erste Ergebnisse (UK Biobank) Risikoadaptierter früherer Beginn mit dem Screening?

Table 4. Exemplary calculation for risk adapted starting age according to sex and PRS decile as an alternative to a general population starting age at age 55

z.B. polygener Risikoscore (PRS), **keine Familienanamnese**

PRS decile	Risk adapted starting age of screening (years)									
	Risk: CRC i	ncidence	Risk: CRC mortality							
	Female	Male		Female	Male					
1	66	60		67	62					
2	61	55		62	57					
3	61	55		61	56					
4	58	52		61	56					
5 or 6	58	52		58	53					
7	55	49		57	52					
8	54	48		55	50					
9	52	46		53	48					
10	48	42		50	45					

Abbreviations: CRC, colorectal cancer; PRS, polygenic risk score.


Chen et al, JAMA Netw Open 2023 (im Druck)

Erste Ergebnisse (UK Biobank) Risikoadaptierter früherer Beginn mit dem Screening?

z.B. polygener Risikoscore (PRS), mit Familienanamnese

Chen et al, Cancer Commun 2023 (im Druck)

Epidemiologie und Prävention von Darmkrebs bei jungen Erwachsenen

Prävention von frühen Darmkrebserkrankungen

Vielen Dank für Ihre Aufmerksamkeit!

