Multimodale Therapieansätze: Oligometastasierung

Dirk Arnold Asklepios Tumorzentrum Hamburg AK Altona, Hamburg

Onkologie und Palliativmedizin mit Sektionen Hämatologie Rheumatologie und Pneumologie

DIRK ARNOLD, DOI 2022-2024

<u>Remunerated</u> Advisory Boards and/or Education Activities/ Honoraria for Presentations

Industry:

Amgen, Arcus, Astra Zeneca, Bayer, BMS, Boston Scientific, Daichii Sankyo, Eli Lilly, GSK, Gilead Janssen, Johnson and Johnson, Merck Serono, MSD, Roche, Sanofi, Servier, Seagen, Sirtex, Takeda CME providers:

Aptutude Health, Art Tempi, PriME Oncology, MedScape, onkowissen, TRM Oncology

Travel support

Daichii Sankyo

Non-remunerated activities:

Advisory Role and/or PI function: Oncolytics, Phanes

Understanding oligometastatic disease

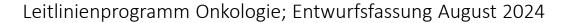
The benefit of local treatment in mCRC

Expanding the concept

Understanding oligometastatic disease

The benefit of local treatment in mCRC

Expanding the concept



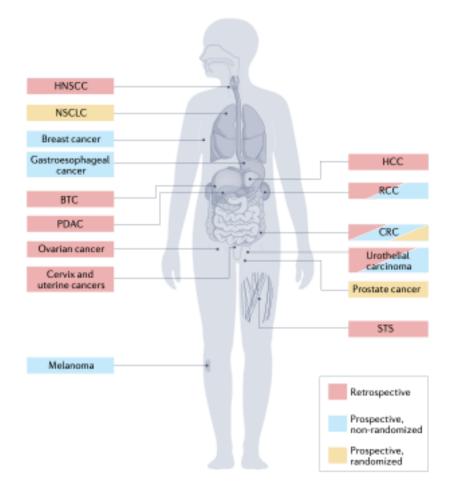
S3-Leitlinie Kolorektales Karzinom

Version 3.01 - XX 2024 AWMF-Registernummer: 021-007OL

Definition Oligometastasierung

- 1-5 Metastasen ggf. mehr falls komplette Eradikation möglich
- Bis zu 2 Organmanifestationen
- Primärtumor resektabel oder schon entfernt
- Alle Metastasen müssen einer lokalen Therapie zugänglich sein

A. Cervantes^{1,2}, R. Adam³, S. Roselló^{1,2}, D. Arnold⁴, N. Normanno⁵, J. Taïeb^{6,7}, J. Seligmann⁸, T. De Baere^{9,10,11}, P. Osterlund^{12,13}, T. Yoshino¹⁴ & E. Martinelli¹⁵, on behalf of the ESMO Guidelines Committee^{*}


Generally, a traditional clinical definition of OMD is:

- One to five metastatic lesions
 - occasionally more if complete eradication is possible
- Up to two metastatic sites
- Controlled primary tumor (optionally resected)
- All metastatic sites must be safely treatable by LT .

The oligometastatic stage

Katipally RR et al., Nat Rev Clin Oncol 2022

The oligometastatic stage

Clinical and/or molecular integrated stage

Low risk

High risk

Proposed magnitude of clinical benefit

Systemic therapy

Pitroda and Weichselbaum, Nat Rev Clin Oncol 2019

Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up $\stackrel{\bigstar}{\sim}$

A. Cervantes^{1,2}, R. Adam³, S. Roselló^{1,2}, D. Arnold⁴, N. Normanno⁵, J. Taïeb^{6,7}, J. Seligmann⁸, T. De Baere^{9,10,11}, P. Osterlund^{12,13}, T. Yoshino¹⁴ & E. Martinelli¹⁵, on behalf of the ESMO Guidelines Committee^{*}

- OMD status has therefore been established by radiological appearances and clinical judgement.
- Notably, OMD status can occur in **multiple clinical scenarios** in the **continuum of care** e.g. during different treatment lines.
 - Therefore, careful and continuous re-assessment is recommended.

Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up $\stackrel{\bigstar}{\sim}$

A. Cervantes^{1,2}, R. Adam³, S. Roselló^{1,2}, D. Arnold⁴, N. Normanno⁵, J. Taïeb^{6,7}, J. Seligmann⁸, T. De Baere^{9,10,11}, P. Osterlund^{12,13}, T. Yoshino¹⁴ & E. Martinelli¹⁵, on behalf of the ESMO Guidelines Committee^{*}

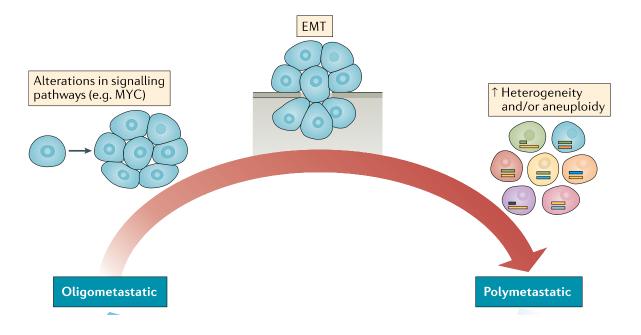
- OMD status has therefore been established by radiological appearances and clinical judgement.
- Notably, OMD status can occur in multiple clinical scenarios in the continuum of care e.g. during different treatment lines.
 - Therefore, careful and continuous re-assessment is recommended.
- Currently, **biological factors do not contribute** to this definition
 - this may change considering, for example, molecular subtypes with specific prognostic background and/or treatment implications.

"Characteristics of indolent disease"

Clinical

- low number (typically 1–5 lesions)
- metachronous presentation
- No involvement of lymph nodes
- Slow rate of progression (<0.6 new lesions per year)
- limited organ sites (typically 1–2 sites)
- Favourable histology (including, but not limited to, breast, prostate and kidney)

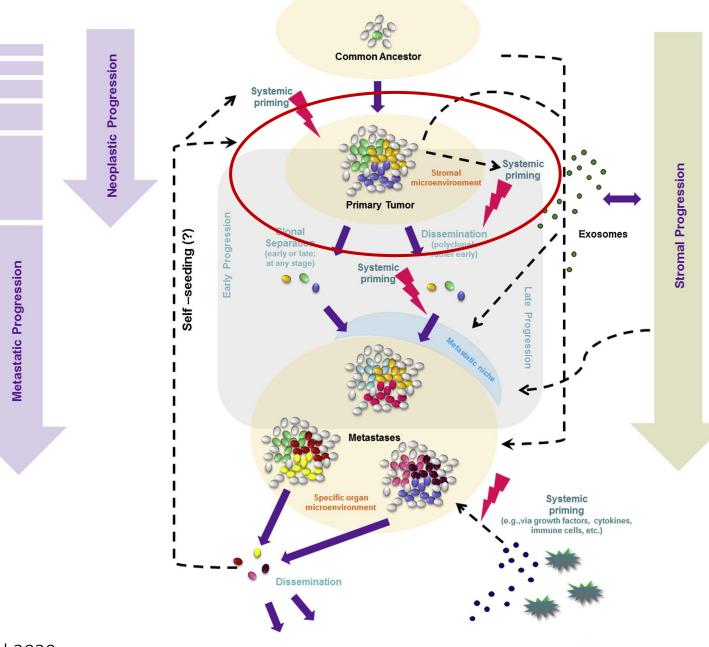
Biological


- Activation of innate and adaptive immunity
- Absence of mesenchymal features
- low degree of tumour aneuploidy
- low degree of intratumoural heterogeneity
- Intact 14q chromosomal arm
- expression of microRNAs that suppress genes associated with metastasis

Treatment

local ablative interventions (with SBRT, RFTA, surgey) tend to be more beneficial than systemic therapy

Mechanistic determinants of metastatic heterogeneity



The tumour

The oligometastatic phenotype

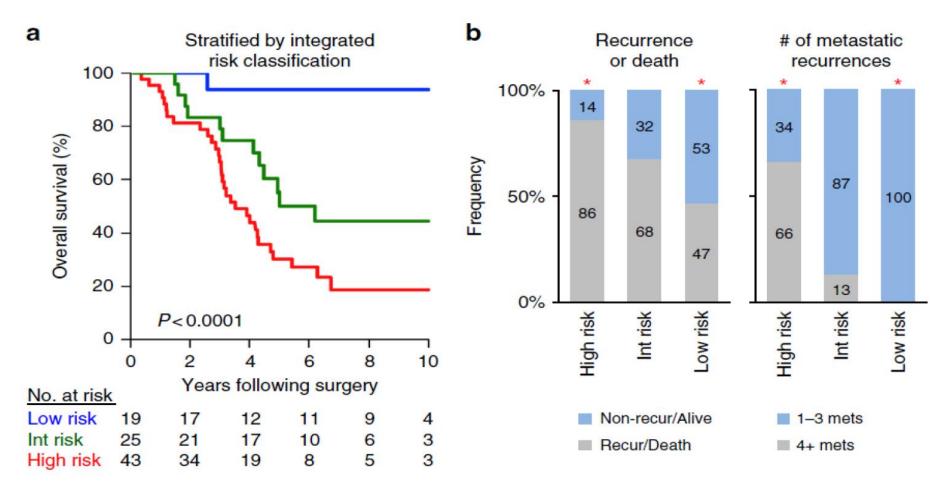
Secondary metastases?

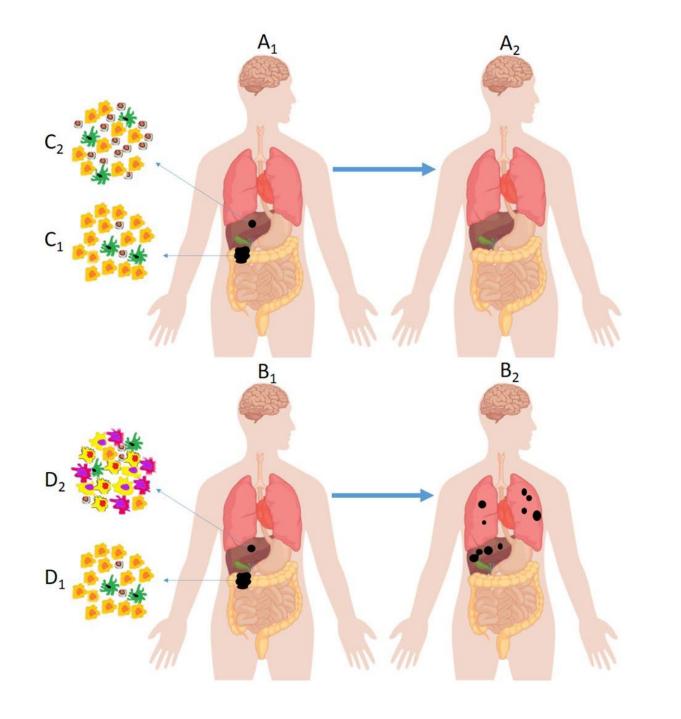
Mutational pattern of oligometastatic mCRC

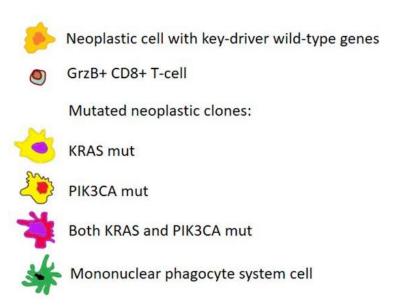
Biomarker	Clinical Significance			
Loss of <i>KRAS</i> and <i>SMAD4</i> alterations from primary to metastatic lesions. High granzyme-B+ T-cell infiltration into metastatic tumor.	The patients with these characteristics remain with liver-limited OMD for long time			
Gain in <i>KRAS, PIK3CA</i> and <i>SMAD4</i> alterations. Scarce granzyme-B+ T-cells infiltration.	The patients with these characteristics develop poly-metastatic widely diffusive disease.			
<i>KRAS</i> regression from primary to metastatic lesions. HLA-C7 aplotype.	The patients with these characteristics remain oligometastatic for long time.			

Ottaiano et al., Cancers (Basel) 2020; Ottaiano et al, Front Immunol 2022

Factors impacting on "biology" of mCRC

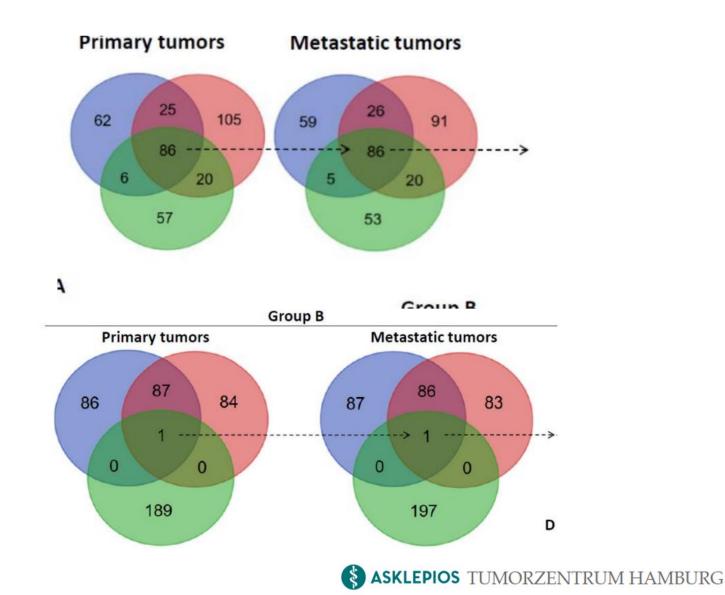

Genomic Epigenomic Trans		criptomic pathways		oma-im	mune microenvi	Driver genes	Clinical			
MSI	l count	Methylation	CMS1	Immune activation JAK–STAT activation Caspases		fibroblasts	Highly immunogenic	daptive	mutations	Proximal
	Mutation	Meth	CMS3	DNÀ damage repair Glutaminolysis Lipidogenesis Cell cycle		ssociated fib		sponse) A	BRAF mu	
CIN			CMS2	WNT targets MYC activation EGFR or SRC activation VEGF or VEGFR activation Integrins activation TGFβ activation		Cancer-assoc	Poorly immunogenic	(Immune respo	RAS and I	(Tumour location)
	Copy	- Goo	CMS4	Mesenchymal transition Complement activation Immunosuppression			Inflamed (immune- tolerant)	Innate		Distal


Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis


	Subtype 1 Canonical	Subtype 2 Immune	Subtype 3 Stromal
Frequency	33%	29%	39%
Molecular signature	↓Immune and stroma E2F/MYC signaling DNA damage and cell cycle	↑Immune Interferon signaling p53 pathway	↑Stroma KRAS signaling EMT and angiogenesis
Specific mutations	NOTCH1 and PIK3C2B	NRAS, CDK12, and EBF1	MAD3
Met. reccurences	Many	Few	Many
Overall survival	Intermediate	Favorable	Unfavourable

Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis

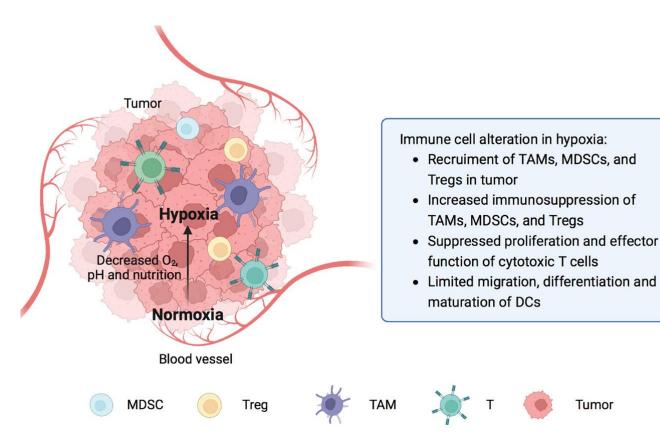
Ottaiano et al., Cancers (Basel) 2023



Mutational pattern of oligometastatic mCRC

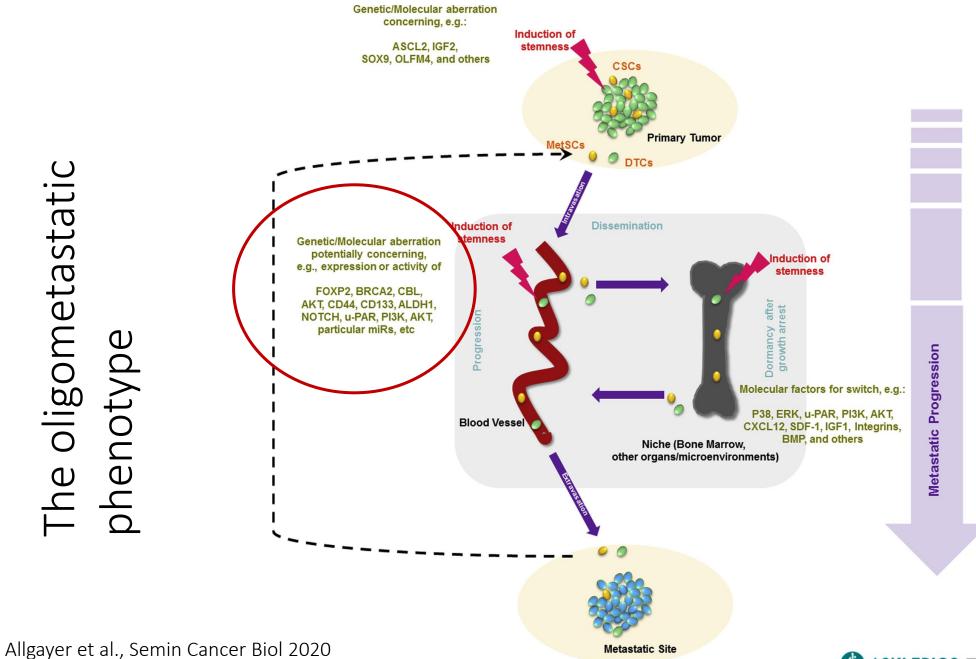
6 out of 98 patients liver oligometastases

(≤3 lesions)


(A) without recurrenceat 3y follow-up(B) recurred within 1y

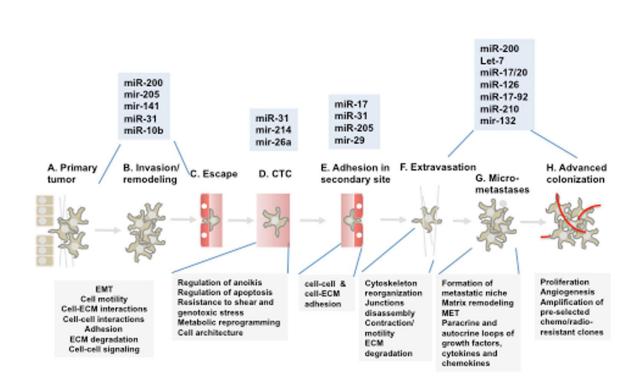
The environment

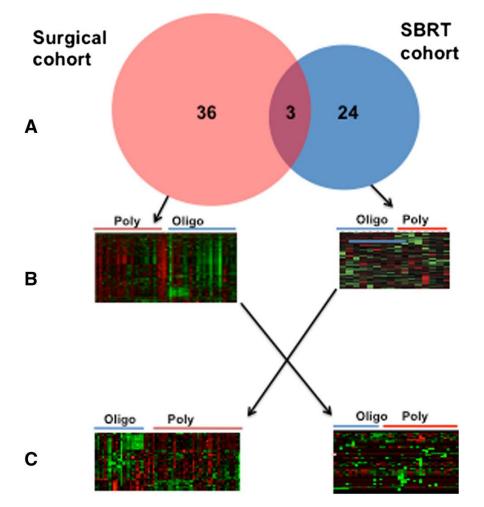
The environment: Tumour microenvironment (TME)



The TME includes

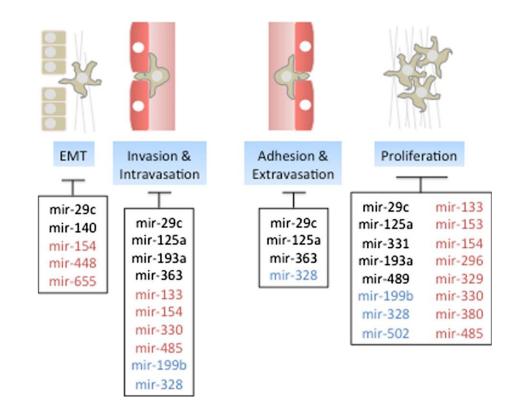
- immune cells,
- extracellular matrix,
- other cells, like fibroblasts
- (blood vessels)


Zhu et al., Organoids 2022



The oligometastatic phenotype

Towards a molecular basis of oligometastatic disease: potential role of micro-RNAs

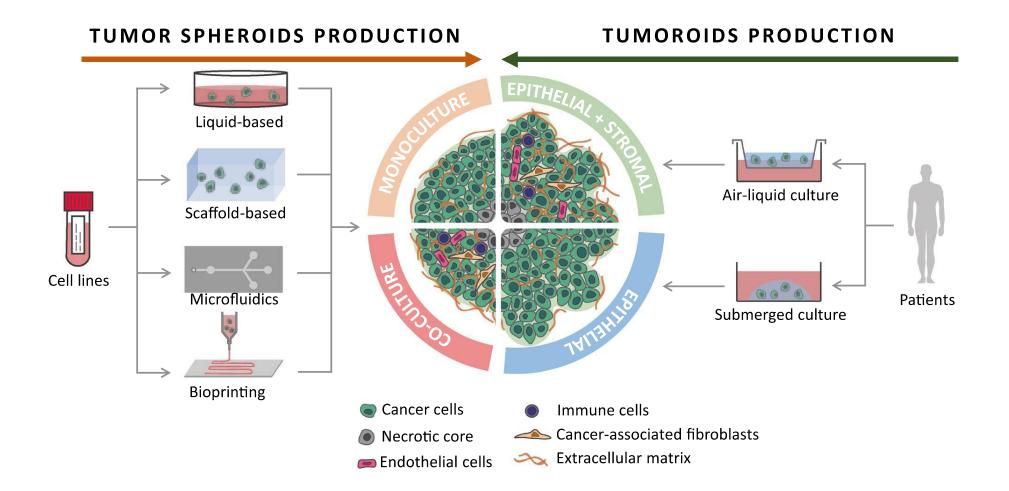

MicroRNAs expression patterns are associated with OMD (or specific subtype of OMD)

ASKLEPIOS TUMORZENTRUM HAMBURG

Uppal et al., Clin Exp Metastases 2014

Towards a molecular basis of oligometastatic disease: potential role of micro-RNAs

MicroRNAs expression patterns are associated with OMD (or specific subtype of OMD)



TME: Chemokine clusters

	Cluster name	Chemokines	Chemokine receptors	Functions
Major clusters	GRO cluster ^a	CXCL1-8	CXCR1, 2	Neutrophils, inflammation, type 3 immunity, angiogenesis
	MCP/MIP cluster ^a	CCL1, 2, 7, 8, 11–13 CCL3–5, 6, 9, 14–16, 18, 23	CCR1-3, 5, 8	Monocytes, inflammation, type1immunity, type2 immunity
Minor clusters	IP-10 cluster ^a	CXCL9-11	CXCR3	Type 1 immunity
	MDC cluster ^a	CCL17, 22	CCR4	Tolerance, type 2 immunity
	SLC cluster ^a	CCL19, 21	CCR7	Lymphoid tissue
	Eotaxin-like cluster ^a	CCL24, 26	CCR3	Type 2 immunity
	Lymphotactin cluster ^a	XCL1, 2	XCR1	Type 1 immunity
Non-cluster	NA	CCL20	CCR6	Type 3 immunity
	NA	CCL25	CCR9	Gut homing, lymphoid tissue
	NA	CCL27	CCR10	Skin homing
	NA	CCL28	CCR3, 10	Type 2 immunity
	NA	CXCL12	CXCR4	Development, haematopoiesis, lymphoid tissue, angiogenesis

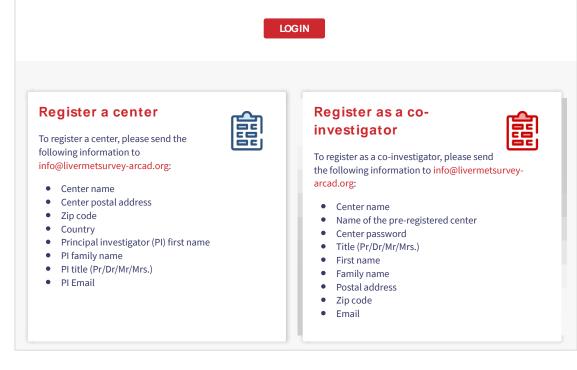
Three-dimensional in vitro culture models in oncology research

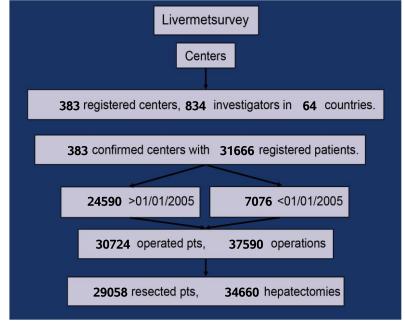
Understanding oligometastatic disease

The benefit of local treatment in mCRC

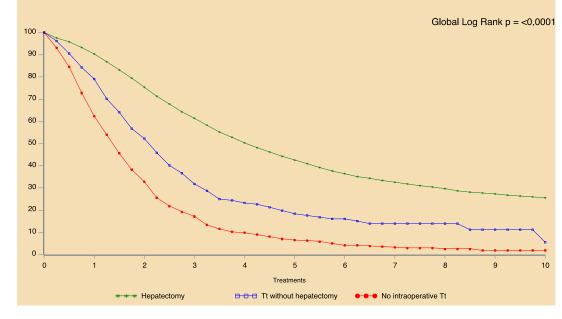
Expanding the concept

LIVERMETSURVEY


Launched by Prof. René Adam in 2006 and sponsored since October 2017 by Fondation A.R.CA.D- Aide et Recherche en CAncérologie Digestive- LMS Program is a prospective international database with more than 70 participating countries.


It focuses on patients operated for colorectal liver metastasis, whether resected or not.

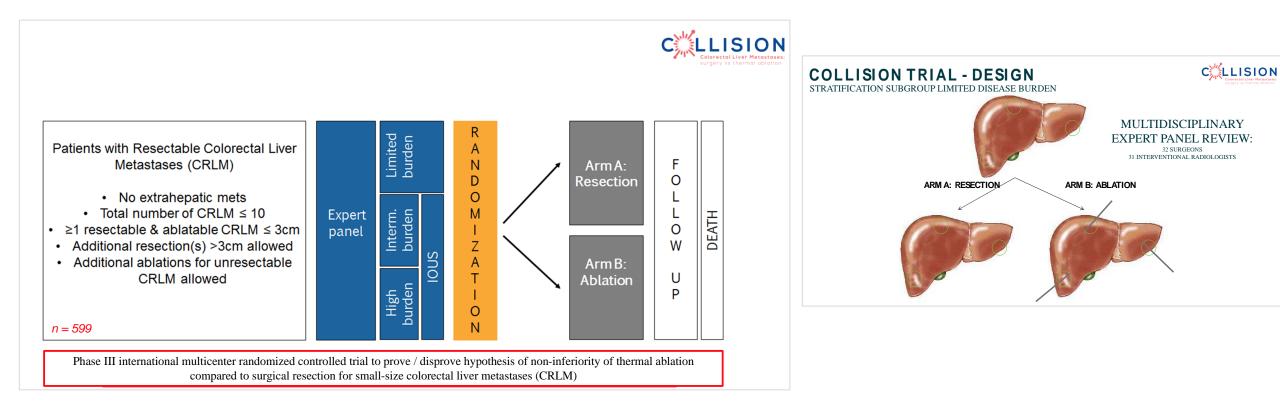
Its objective is to collect on a multi-institutional basis the most significant data concerning the history, the treatment (chemotherapy, surgery, combined ablation) and the outcome of operated patients.


The final purpose is to evaluate patient outcomes and prognostic factors for resected patients, so as to define guidelines of optimal treatment and strategy.

LMS Program is opened to all centers across the world, whether private or public; no selection criteria will be applied regarding prior surgical experience and/ or size of the center. Investigators are requested to include all their operated patients consecutively and to provide their follow-up at long-term.

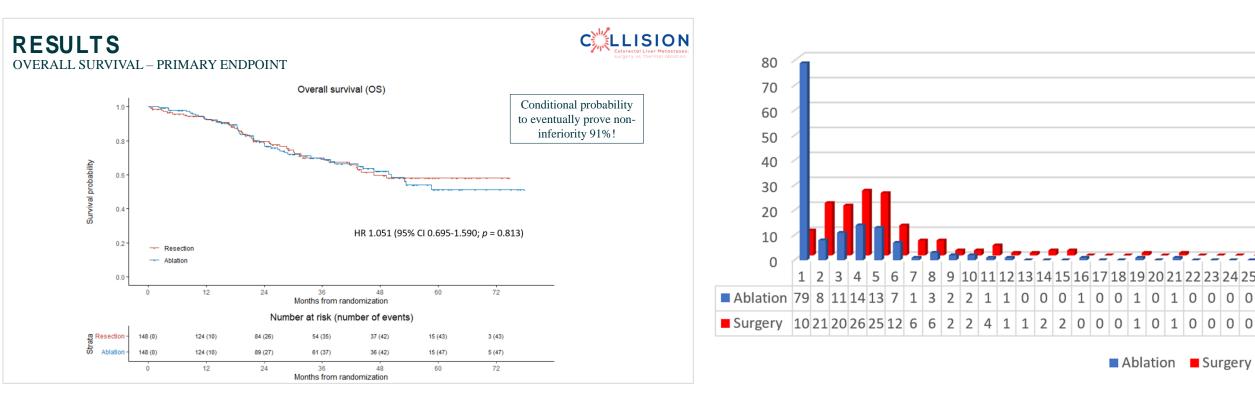
Patient Survival after a 1st liver operation for Colorectal Metastases : 29717 patients

www.livermetsurvey.arcad.org


Kurativ intendierte Therapie: S3 Leitlinie

10.2 Resektable Metastasierung

10.8	Konsensbasiertes Statement			nei	u 2024			
EK	Anwendung lokal	abler Metastasierung er Therapieverfahre nerapieverfahren zu	n zu prüfen. Nebe		-			
	Starker Konsens	10.9	Konsensbasie	rte Empi	fehlung		neu 2024	
		EK	Die Beurteilung der Resektabilität oder des Einsa Therapieverfahren soll unter Beteiligung eines in erfahrenen Chirurgen bzw. in der Anwendung lo RFA, TACE, intraarterielle CTx) erfahrenen Thera			g eines in der Metasta endung lokalen Thera	asenchirurgie pieverfahren (SRBT,	
			Starker 10.10 Konsensbasi			ierte Empfehlung		neu 2024
			EK		insbesondere krankheitsfre der Metastas Kann durch o erreicht werd	uvante Therapie von primär resektablen Lebermetastasen kann re bei prognostisch ungünstiger Tumorbiologie (z. B. kurzes reies Intervall oder synchrone Metastasierung, Anzahl und Lokalisation sen etc.) erfolgen. diese systemische Therapie eine Stabilisierung der Erkrankung rden, so sollte die Resektion möglichst zeitnah (d. h. nach 2 – 3 erapie) angestrebt werden.		


Management of limited metastases: Surgery or RFTA?

Meijerink M et al., ASCO 2024

Management of limited metastases: Surgery or RFTA?

10000

■ Ablation ■ Surgery

Statement der interdisziplinären AG GIT der DKG

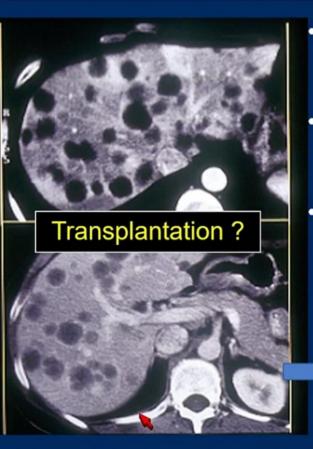
stellt die thermische Ablation eine onkologisch nicht inferiore Therapiealternative zur chirurgischen Resektion von resektablen Lebermetastasen dar.

Dies gilt für klinische Situationen, in denen max. 10 Metastasen vorhanden und von denen mindestens eine <3cm groß ist.

- ... multifokale hepatische Metastasierung mit minimalem Parenchym-Verlust in eine makroskopische Tumorfreiheit...zu bringen.
- ...darf in diesem Zusammenhang auch als Argument f
 ür ein kombiniertes Verfahren aus Resektion und Ablation zur Vermeidung großer Parenchymverluste verstanden werden.

How can we eradicate metastases?

Local ablative treatments of metastases


- Surgery
- Local ablation techniques
- SBRT
- Intra-arterial therapies

Eradication rate: 100% Eradication rate: >95%* Eradication rate: 70-100% Eradication rate: 40-90%*

*Depends on: size, localisation, physical effects (cooling,....), and: skills and techniques

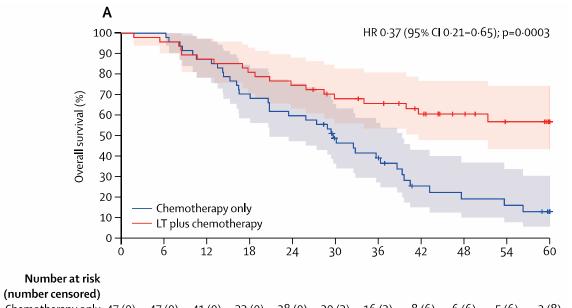
Management of liver limited metastases: Transplantation?

Definitively Non Resectable Liver Metastases : Rationale

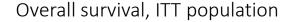
- Absolute contraindication in the 2000's because of the low 5-year survival (18%)¹
- More recently : improved outcome with better patient selection and increased efficacy of chemotherapy (C)²
 - However, strong evidence for clinical benefit : critical
 - Scarcity of organs
 - Perception "no role for local treatment in an advanced metastatic disease"

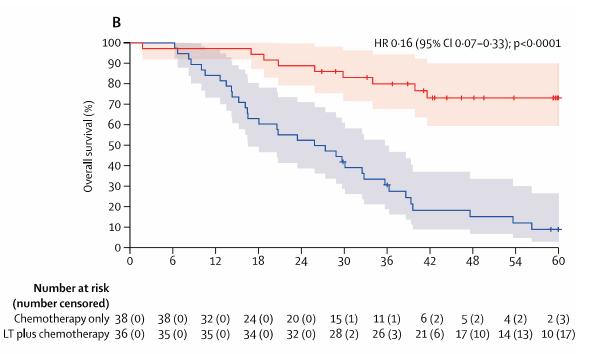
Randomised study to assess the efficacy of LT+C compared to C alone

(1) Foss et al, Tranplant Int 2010 (2) Hagness et al, Ann Surg 2013

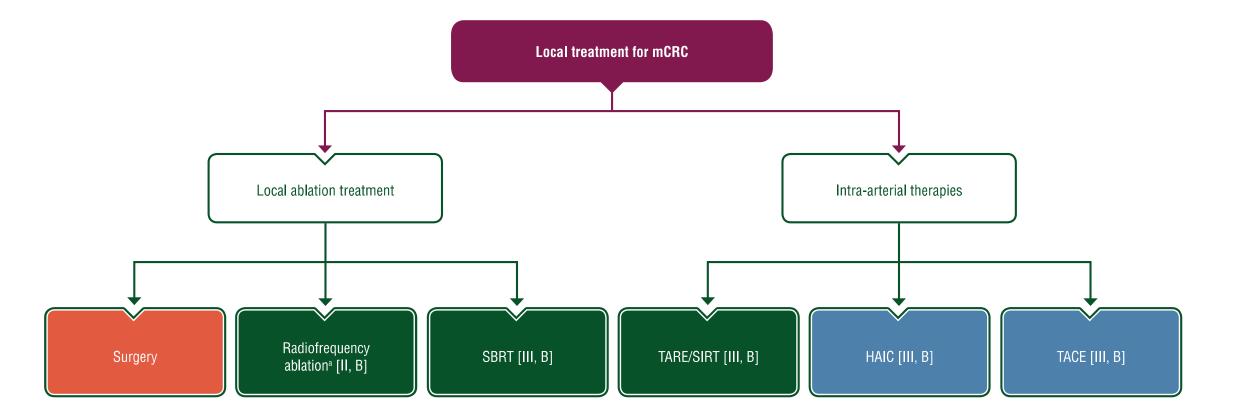

Adam R et al., ASCO 2024

ESMO ACADEMY


Dirk Arnold


Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

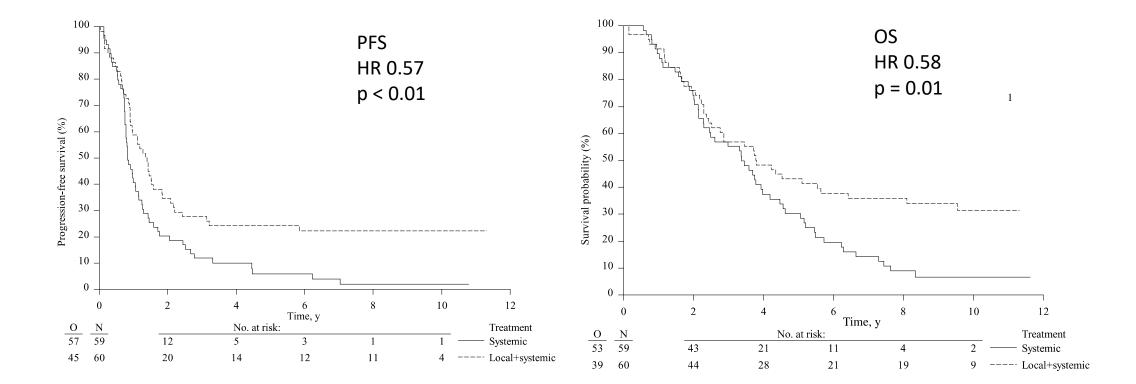
Liver transplantation in mCRC: Randomized TRANSMET study



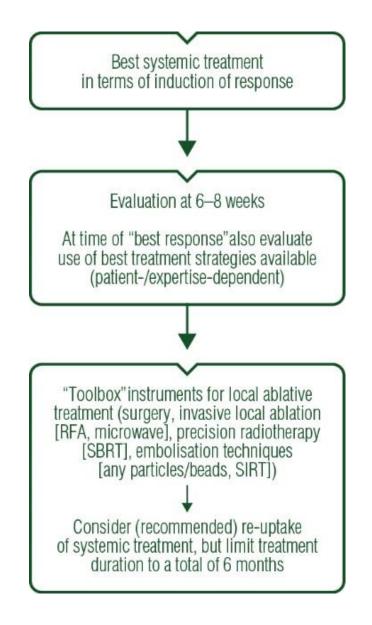
Overall survival, PP population

Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up $\stackrel{\bigstar}{\sim}$

A. Cervantes^{1,2}, R. Adam³, S. Roselló^{1,2}, D. Arnold⁴, N. Normanno⁵, J. Taïeb^{6,7}, J. Seligmann⁸, T. De Baere^{9,10,11}, P. Osterlund^{12,13}, T. Yoshino¹⁴ & E. Martinelli¹⁵, on behalf of the ESMO Guidelines Committee^{*}



Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial


119 pts., "liver only" met disease; not suitable for resection; <10 lesions

CLOCC Trial, Ruers et al., JNCI 2017

Median follow-up 9.7 yrs

Local ablative treatments....should be selected.....according to

- Localisation and treatment goal
- 'the more curative the more surgery'/higher importance of local/complete control),
- treatment-related morbidity,
- local expertise and availability,
- patient-related factors.

Local vs. systemic control: EORTC CLOCC and EPOC trials

	Radiofrequency ablation (RFA) – CLOCC ($N = 55$)	Resection (RES) – EPOC ($N = 81$)
Median fluorouracil (FU) from RFA/ surgery	4.7 years	8.2 years
Recurrences	38 (69.1%)	48 (59.3%)
Local recurrence per patient treated (LR)*	8/55 (14.5%)	6/81 (7.4%)
Local recurrence rate per lesion treated	10/167 (6.0%)	6/110 (5.5%)
Non-local liver recurrence [#]	17 (30.9%)	18 (22.3%)
Extra hepatic recurrence only	13 (23.6%)	24 (29.6%)

65%

*Includes for RFA: three treated patients with combined non-local liver recurrences.

*Includes for RES: one patient with a combined extra-hepatic recurrences.

Local vs. systemic control: EORTC CLOCC and EPOC trials

	Radiofrequency ablation (RFA) – CLOCC ($N = 55$)	Resection (RES) – EPOC ($N = 81$)
Median fluorouracil (FU) from RFA/ surgery	4.7 years	8.2 years
Recurrences	38 (69.1%)	48 (59.3%)
Local recurrence per patient treated (LR)*	8/55 (14.5%)	6/81 (7.4%)
Local recurrence rate per lesion treated	10/167 (6.0%)	6/110 (5.5%)
Non-local liver recurrence [#]	17 (30.9%)	18 (22.3%)
Extra hepatic recurrence only	13 (23.6%)	24 (29.6%)

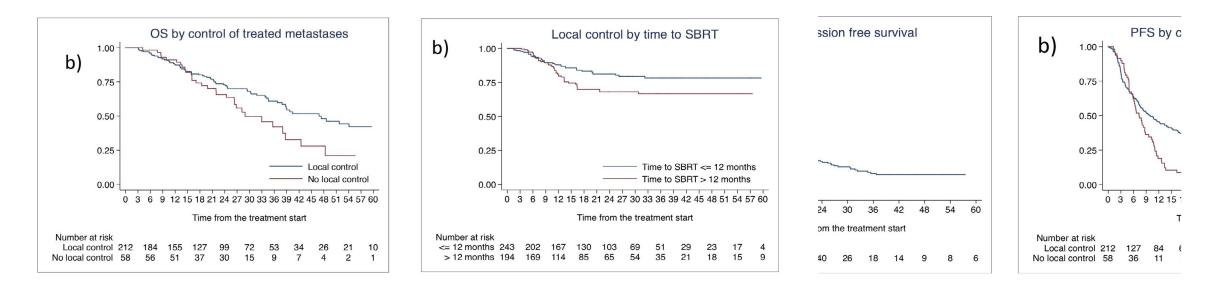
6%

*Includes for RFA: three treated patients with combined non-local liver recurrences.

*Includes for RES: one patient with a combined extra-hepatic recurrences.

Local vs. systemic control: EORTC CLOCC and EPOC trials

	Radiofrequency ablation (RFA) – CLOCC ($N = 55$)	Resection (RES) – EPOC ($N = 81$)	
Median fluorouracil (FU) from RFA/ surgery	4.7 years	8.2 years	
Recurrences	38 (69.1%)	48 (59.3%)	
Local recurrence per patient treated (LR)*	8/55 (14.5%)	6/81 (7.4%)	6%
Local recurrence rate per lesion treated	10/167 (6.0%)	6/110 (5.5%)	070
Non-local liver recurrence [#]	17 (30.9%)	18 (22.3%)	
Extra hepatic recurrence only	13 (23.6%)	24 (29.6%)	50-55

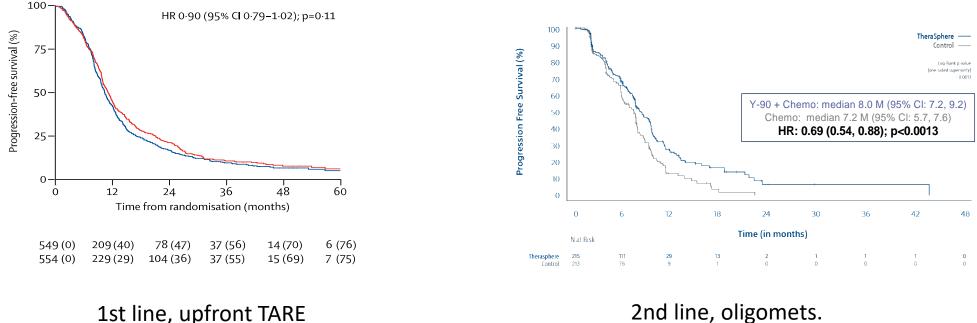

*Includes for RFA: three treated patients with combined non-local liver recurrences.

*Includes for RES: one patient with a combined extra-hepatic recurrences.

Known prognostic factors: Control of systemic disease, and completeness of intervention

Original Article

Predictive factors for survival of oligometastatic colorectal cancer treated with Stereotactic body radiation therapy



Beispiel: transarterielle Radioembolisation beim KRK

First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials

Radioembolization with Chemotherapy for Colorectal Liver Metastases: a randomized, open-label, international, multicenter, phase 3 trial

EPOCH study

2nd line, oligomets.

Wasan et al., Lancet Oncol 2017; Mulcahy et al., J Clin Oncol 2021

Oligometastatic disease and LAT: What can be improved?

Not likely to be "super relevant":

(Technically) better surgery(Technically) better Local Ablative Treatment (LAT)Different systemic treatment

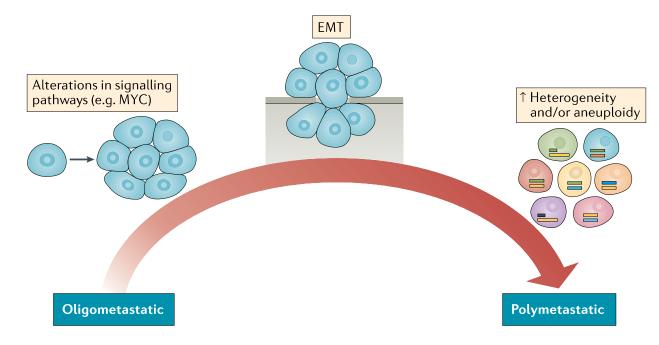
Oligometastatic disease and LAT: What can be improved?

Not likely to be "super relevant":

(Technically) better surgery(Technically) better Local Ablative Treatment (LAT)Different systemic treatment

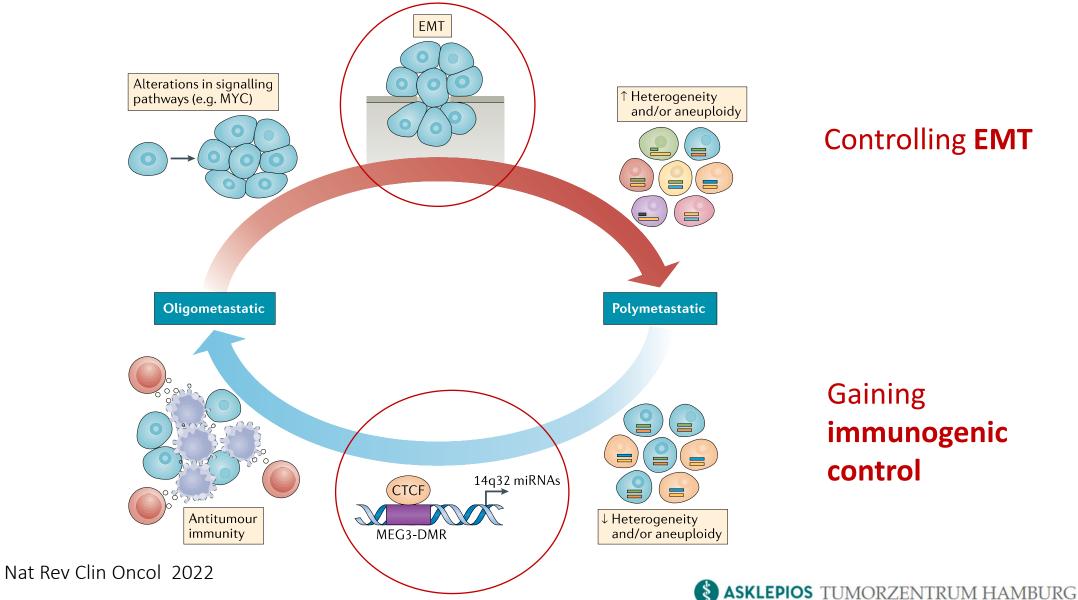
More likely:

Selection of patients with "biologically" localized disease Best integration of LAT - with surgery and systemic treatment Evaluation of common, but not fully evaluated clinical scenarios

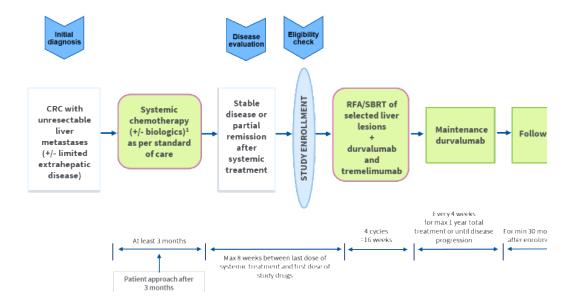

Understanding oligometastatic disease

The benefit of local treatment in mCRC

Improving the concept


Mechanistic determinants of metastatic heterogeneity

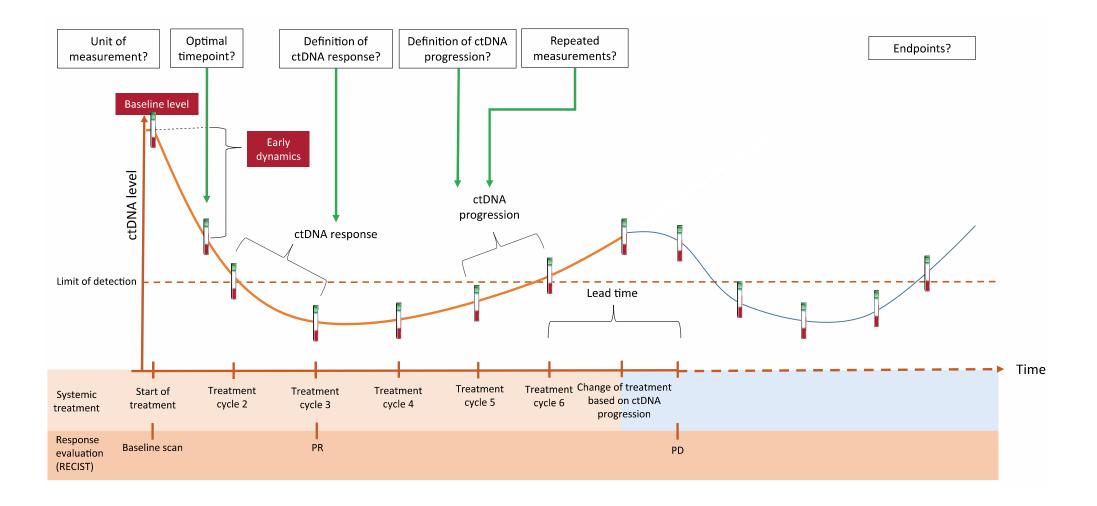
Katipally RR et al., Nat Rev Clin Oncol 2022



Mechanistic determinants of metastatic heterogeneity

Katipally RR et al., Nat Rev Clin Oncol 2022

Durvalumab and tremelimumab plus local partial tumor ablation (RFA or stereotactic radiotherapy) in patients with unresectable liver metastases from metastatic colorectal cancer: Results of the EORTC-1560-GITCG multicentre single-arm phase II study (ILOC) Seligmann J¹, Koessler T², Mauer M³, Evrard S⁴, Freedman J⁵, Gootjes EC⁶, Guckenberger M⁷, Govaerts AS³, Giraut A³, Ricke J⁸, Folprecht G⁹, Arnold D¹⁰, Giasafaki P³, Ducreux M¹¹, Antunes S³, Ruers T¹²


	Type of local tumor ablation		
	RFA (radiofrequency ablation) (N=12)	SBRT (stereotactic radiotherapy) (N=8)	Total (N=20)
Best overall immune response	N (%)	N (%)	N (%)
iCR+iPR	0	0	0
iSD	5 (41.7)	4 (50.0)	9 (45.0)
iCPD/iUPD	7 (58.3)	4 (50.0)	11 (55.0)

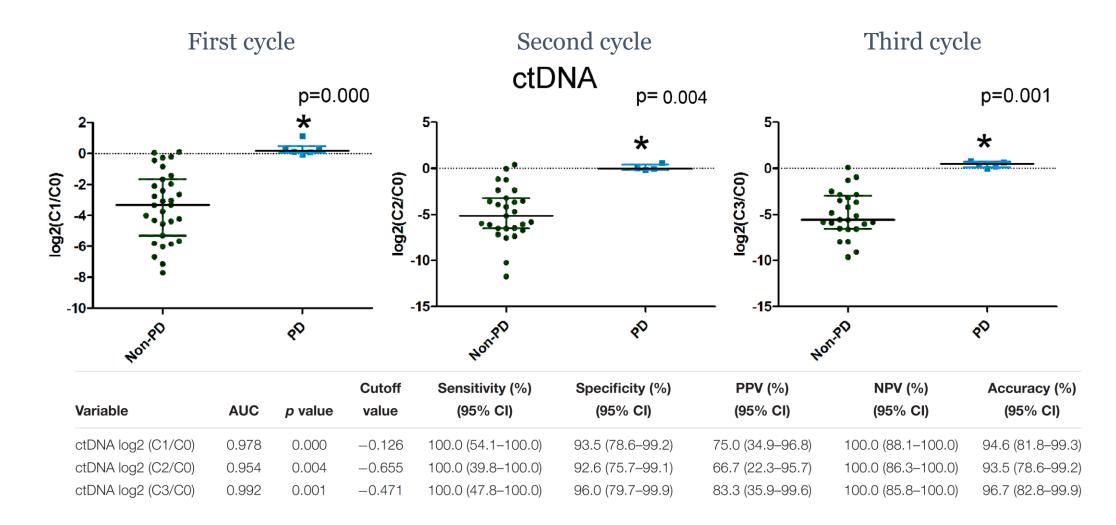
Seligman J et al., ASCO GI 2024; in press

Opportunity #2: Treatment determination by ctDNA

Continous assessment - treatment needs

More than 2,000 pts: Japanese GALAXY / CIRCULATE

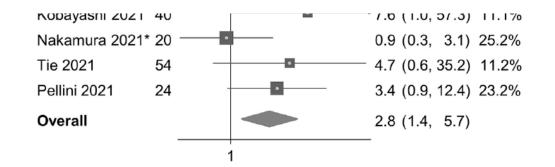
Disease free survival (DFS) based on ctDNA status at 4 weeks post-surgery


ctDNA	Events/N	6M-DFS (95% CI)	12M-DFS (95% CI)	18M-DFS (95% CI)
ctDNA	81/852	96.1%	91.7%	90.5%
negative		(94.6-97.2)	(89.6-93.3)	(88.3-92.3)
ctDNA	115/188	55.6%	40.6%	38.4%
positive		(48.2-62.64)	(33.6-47.6)	(31.4-45.5)

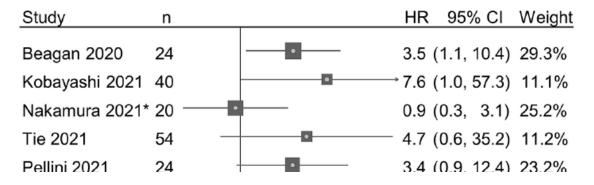
With a single test at 4w post-op, overall 18M-DFS of 38.4% in the MRDpositive group and 90.5% in the MRD-negative group, including all treated and non-treated patients

Kotani D et al., Nature Med 2023

ctDNA dynamics indicating response to systemic tx.


Jia et al., Front Genet 2021

Circulating DNA in patients undergoing loco-regional treatment of colorectal cancer metastases: a systematic review and meta-analysis


Louise B. Callesen^(D), Tana Takacova^(D), Julian Hamfjord, Florian Würschmidt, Karl J. Oldhafer, Roland Brüning, Dirk Arnold and Karen-Lise G. Spindler

in <u>pre</u>-ablation samples

(a)

RFS

Callesen et al., Ther Adv Med Oncol 2022

Circulating DNA in patients undergoing loco-regional treatment of colorectal cancer metastases: a systematic review and meta-analysis

Louise B. Callesen^(D), Tana Takacova^(D), Julian Hamfjord, Florian Würschmidt, Karl J. Oldhafer, Roland Brüning, Dirk Arnold and Karen-Lise G. Spindler

in <u>post</u>-ablation samples

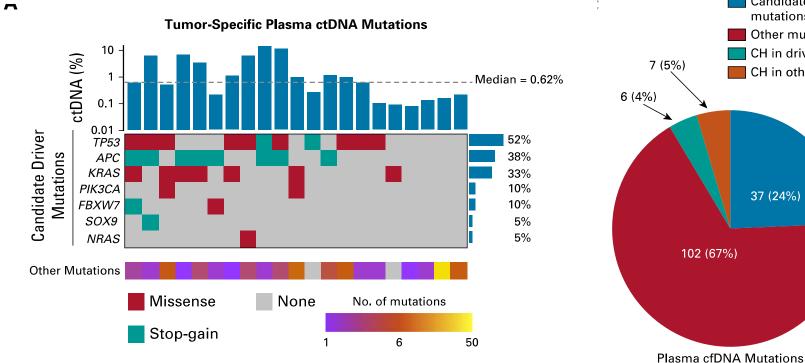
(c)

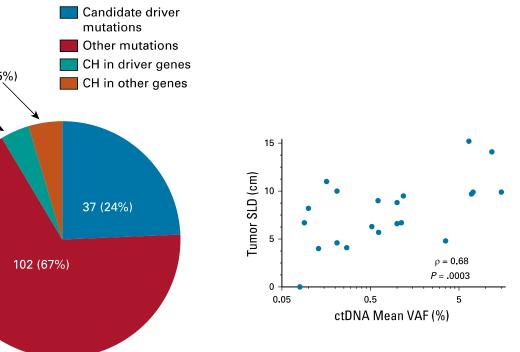
RFS

Study	n		HR 95% CI Weight
Schøler 2017**	23		4.9 (1.5, 15.7) 5.5%
Boysen 2020 A	35	D	3.4 (1.0, 11.0) 5.4%
Tie 2021	49		6.3 (2.6, 15.2) 8.6%
Wang 2021	82		2.7 (1.5, 4.9) 14.7%
Loupakis 2021	112		5.8 (3.5, 9.7) 17.7%
Bolhuis 2021	23	0	3.3 (1.1, 9.7) 6.2%
Parikh 2021	16	0	6.0 (1.0, 36.4) 2.5%
Reinert 2022**	40	•	7.6 (3.0, 19.5) 7.8%
Øgaard 2022**	84	•	7.3 (3.7, 14.4) 12.7%
Nishioka 2022	105		3.1 (1.9, 5.0) 18.9%

Study	n		HR 95% CI Weight
Schøler 2017**	23	•	4.9 (1.5, 15.7) 5.5%
Boysen 2020 A	35	D	3.4 (1.0, 11.0) 5.4%
Tie 2021	49	•	6.3 (2.6, 15.2) 8.6%
Wang 2021	82		2.7 (1.5, 4.9) 14.7%

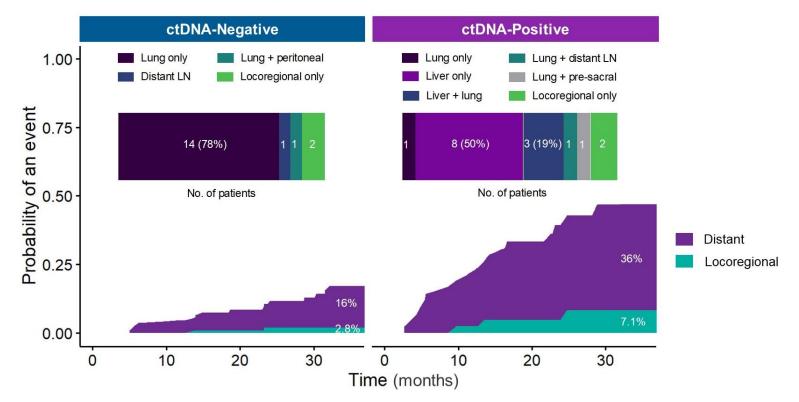
(c)


RFS


Callesen et al., Ther Adv Med Oncol 2022

BIOMARKERS

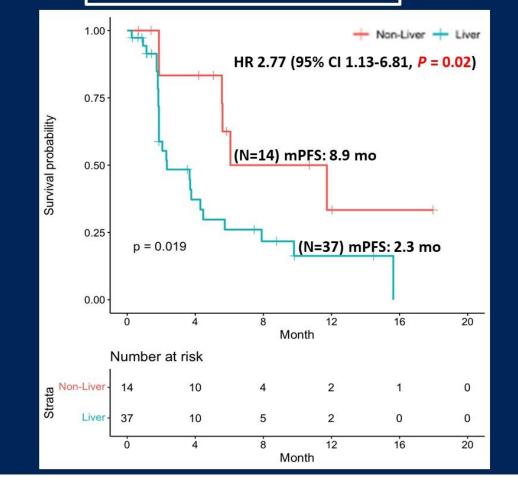
ctDNA MRD Detection and Personalized Oncogenomic Analysis in Oligometastatic Colorectal Cancer From Plasma and Urine

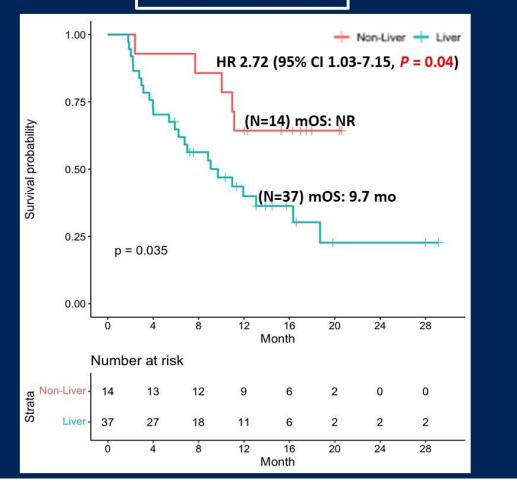


ctDNA MRD profile may correlated with site of relapse

Australian DYNAMIC Rectal trial

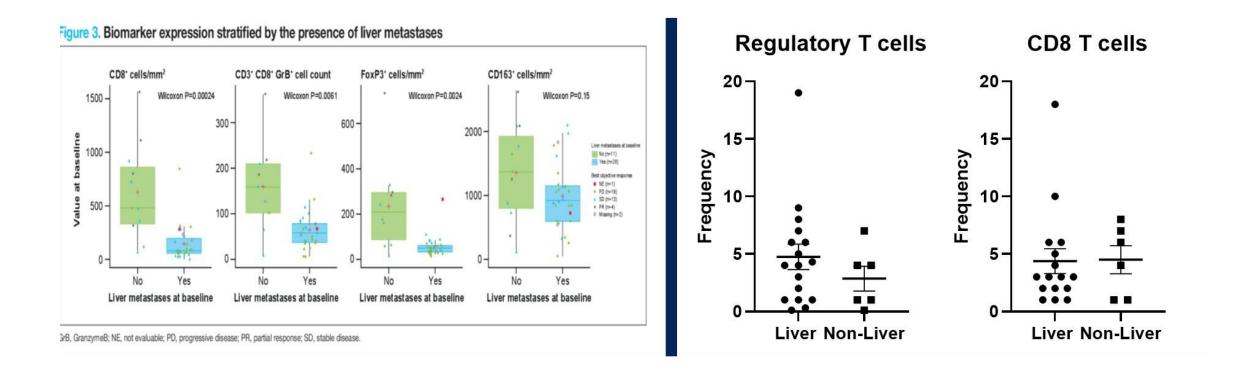
Sites of Relapse by Post-Op ctDNA Status


Opportunity #3: Considering different immunology of different metastatic sites



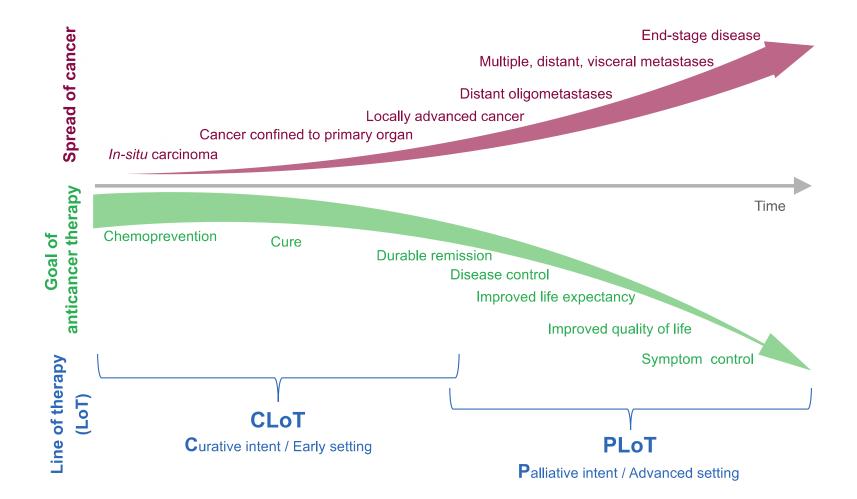
PFS and OS by Presence and Lack of Liver Metastases in MSS MCRC

Progression Free Survival


Overall Survival

Kim R et al., ASCO 2023

Biological characteristics of colorectal liver metastases



Summary

- OMD is an established concept in management of mCRC
- Various treatment modalities with the specific pro's and con's
- Studies have identified specific molecular and genetic features that underlie the oligometastatic phenotype
 - Genes that encode reduced cancer cell migration and invasion ability
 - Factors that indicate enhanced immune response (likely in the metastatic microenvironment).
 - Prognostic and predictive molecular features
 - Site of metastasation
 - ctDNA may help to determine the best clinical scenario
- However biology is not yet ready for prime time.....more trials!

OMD in treatment *lines*: Where are we "in"?

Dirk Arnold

Asklepios Tumorzentrum Hamburg d.arnold@asklepios.com

ASKLEPIOS KLINIK ALTOI

SASKLEPIOS TUMORZENTRUM HAMBURG

NA