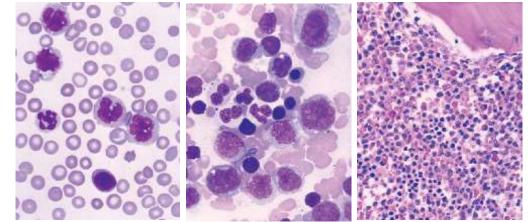
WHO Klassifikation der MDS/MPN - Histologie -

Hans Michael Kvasnicka University of Frankfurt, Germany hans-michael.kvasnicka@kgu.de

Principles and rationale of the WHO 2016 classification (updating the 4th edition)

- the WHO classification emphasizes the identification of distinct clinicopathological entities, rather than just being a "cell of origin" classification
- stresses an "integrated approach" to disease definition by incorporation of
 key available information including morphology, molecular and cytogenetic findings, immunophenotype, and clinical features
- the work of a large number of hematopathologists, but developed with the active advice and consent of clinicians

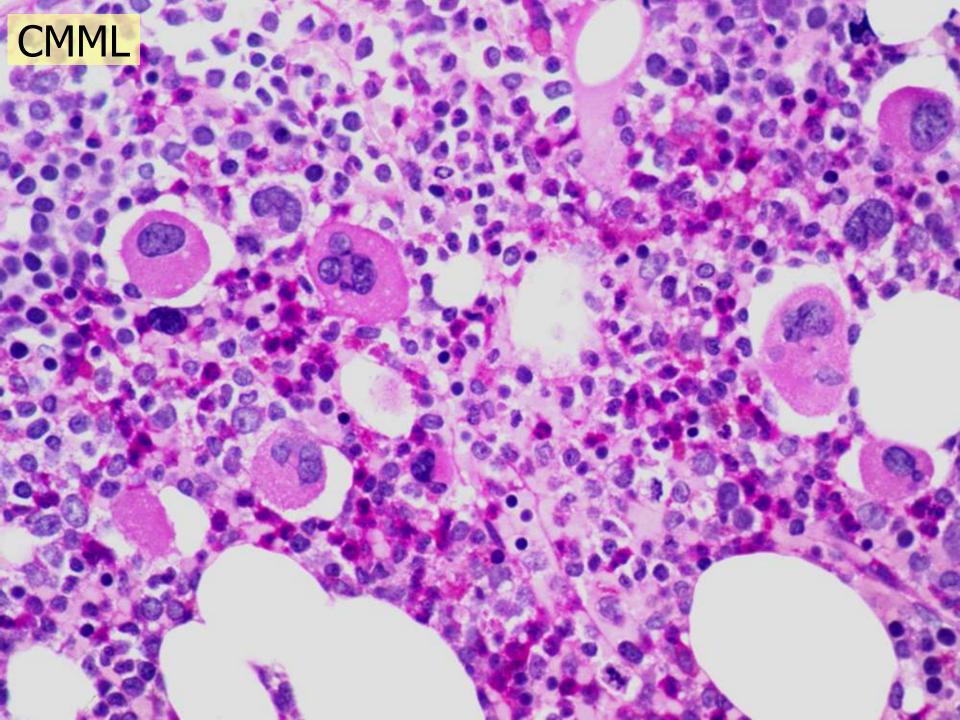
ADHERE TO STRICT ARBITRARY CRITERIA!


Chronic myelomonocytic leukemia (CMML)

bone marrow features

hypercellular with monocytic and granulocytic proliferation

myeloblasts/monoblasts


- CMML-0 < 5%</p>
- CMML-1 < 10%</p>
- CMML-2 < 20%</p>

erythroid precursors >15%

increase in reticulin fibers in 30%

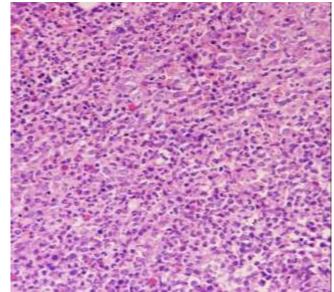
erythroid and megakaryocytic dysplasia

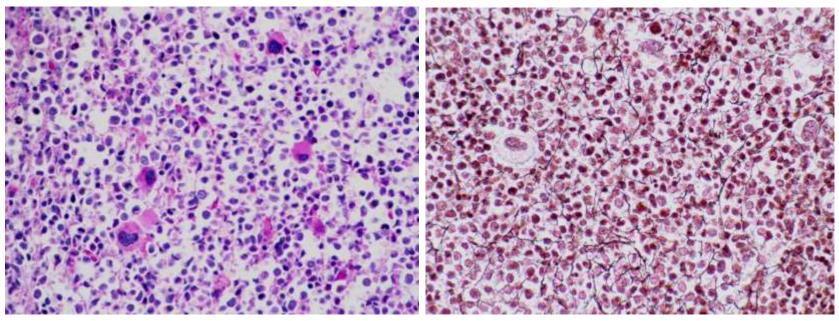
CMML

WHO 2016 Updates to CMML

- Additional PB requirement of $\geq 10\%$ monocytes
- Integration of mutations could help supporting a CMML diagnosis (particularly TET2 plus SRSF2) and/or prognostic information (ASXL1)
- MDS- vs. MPN-like
 - CMML dysplastic (WBC, $<13 \times 10^{9}/L$)
 - CMML proliferative $(\geq 13 \times 10^{9}/L);$ this subtype has more frequent RAS or JAK2 mutations and splenomegaly

- **Refined blast count**
 - CMML-0: <2% blasts in PB;
 - <5% blasts in BM
 - CMML-1: 2–4% blasts in PB;
 - CMML-2:
- 5–9% blasts in BM
 - 5–19% blasts in PB; 10–19% in BM, or when Auer rods are present irrespective of the blast count


Ricci C et al. Clin Cancer Res. 2010 ; Schuler E, et al. Leuk Res. 2014; Cervera N, et al. Am J Hematol. 2014 Jun;89(6):604-9. Meggendorfer M et al. Blood 2012; Itzykson R et al. J Clin Oncol 2013; Federmann B et al. Hum Pathol. 2014; Patel B et al. Int J Hematol. 2015; Gerstung M, et al. Nat Commun. 2015


aCML becomes a better defined entity

- It has its own molecular profile:
 - SETBP1 mutations in 15-32% and ETNK1 mutations in 9% ETNK1 coexistent with SETBP1 in 33%
 - JAK2, CALR mutations rare or absent
 - *CSF3R* mutations absent or very rare (<10%)
- Can be separated from other MDS/MPN subtypes and from MPN (e.g., CNL, cases of MPN in AP)
- aCML has poorer survival than other MDS/MPN or MPN; novel targeted approaches much needed
- Main distinction is with chronic neutrophilic leukemia (CNL)

BM histology in aCML

- hypercellular with predominance of the granulocytic series
 - increase in myeloid precursors
 - reduced erythropoiesis
 - variable degree of reticulin fibrosis
- dysplastic megakaryocytes

Diagnostic criteria for aCML (Update 2016)

- Peripheral blood leukocytosis due to increased numbers of neutrophils and their precursors (promyelocytes, myelocytes, metamyelocytes ≥10% of leukocytes)
- Dysgranulopoiesis, which may include abnormal chromatin clumping
- Not meeting WHO criteria for *BCR-ABL1*-positive chronic myelogenous leukaemia, primary myelofibrosis, polycythemia vera or essential thrombocythemia^a
- No rearrangement of *PDGFRA*, *PDGFRB*, *FGFR1*, or *PCM1-JAK2*
- No or minimal absolute basophilia; basophils usually <2% of leukocytes
- No or minimal absolute monocytosis; monocytes <10% of leukocytes</p>
- Hypercellular bone marrow with granulocytic proliferation and granulocytic dysplasia, with or without dysplasia in the erythroid and megakaryocytic lineages.
- Less than 20% blasts in the blood and bone marrow

Cases of PV or ET particularly if in accelerated phase and/or in Post-PV or Post-ET myelofibrotic stage, if neutrophilic, may simulate aCML. A previous history of MPN, the presence of MPN features in the bone marrow and/or MPN-associated mutations (in *JAK2, CALR* or *MPL*) tends to exclude a diagnosis of aCML.

A diagnosis of aCML is supported by the presence of *SETBP1 and*/or *ETNK1* mutations. The presence of *CSF3R* mutations is uncommon in aCML; if detected, it should prompt a careful morphologic review to exclude an alternative diagnosis of CNL or other myeloid neoplasm.

MDS/MPN-RS-T: now promoted to a full entity

MPN-like

- Clinical presentation
 - Thrombocytosis
 - Need for cytoreduction
- BM morphology
 - Large megakaryocytes with bulbous nuclei
- Genetic profile
 - JAK2 mutation (50-60%)
 - Rare CALR/MPL

MDS-like

- Clinical presentation
 - Macrocytic anemia
 - Transfusion requirement
- BM morphology
 - Erythroid dysplasia
 - Ring sideroblasts
- Genetic profile
 - SF3B1 mutation (80-90%)

Diagnostic criteria for MDS/MPN-RS-T (Update 2016)

- Anaemia associated with erythroid lineage dysplasia with or without multilineage dysplasia, ≥15% ring sideroblasts*, <1% blasts in peripheral blood and <5% blasts in the bone marrow
- Persistent thrombocytosis with platelet count \geq 450 x 10⁹/L
- Presence of a SF3B1 mutation or, in the absence of SF3B1 mutation, no history of recent cytotoxic or growth factor therapy that could explain the myelodysplastic/myeloproliferative features**
- No BCR-ABL1 fusion gene, no rearrangement of PDGFRA, PDGFRB or FGFR1; or PCM1-JAK2; no (3;3)(q21;q26), inv(3)(q21q26) or del(5q)***
- No preceding history of MPN, MDS (except MDS-RS), or other type of MDS/MPN

*≥15% ring sideroblasts required even if *SF3B1* mutation is detected

**A diagnosis of MDS/MPN-RS-T is strongly supported by the presence of *SF3B1* mutation together with a mutation in *JAK2* V617F, *CALR* or *MPL* genes

***In a case which otherwise fulfills the diagnostic criteria for MDS with isolated del(5q)-No or minimal absolute basophilia; basophils usually <2% of leukocytes

Summary: Revision of MDS/MPN

- Refractory anemia with ring sideroblasts associated with marked thrombocytosis (MDS/MPN-RS-T)
- Atypical CML, *BCR-ABL1* negative (aCML)
- Chronic myelomonocytic leukemia (CMML)

Mutations are insufficient to diagnose MDS/MPN on their own

They rather represent a usefully complement to a clinicopathologic-based diagnosis

 Moved from a provisional to a full entity and new name

 Common co-mutation of JAK2 and SF3B1

- Integration of NGS: SETBP1, CSF3R, ETNK1
- CNL: common co-mutation CSF3R/SETBP1
- Mutation profile (SRSF2/TET2/ASXL1) helpful in supporting diagnosis and providing prognosis
- Cases with NPM1 mutation or 11q23 rearrangement should be followed carefully for AML
- Emphasize careful blast/ promonocyte/monocyte count to distinguish from AML
- CMML-0,-1,-2; CMML MDS and MP subtypes